Fighting the bias-variance tradeoff

- **Simple (a.k.a. weak) learners are good**
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don’t usually overfit

- **Simple (a.k.a. weak) learners are bad**
 - High bias, can’t solve hard learning problems

- Can we make weak learners always good???
 - No!!
 - But often yes...
Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn **many weak classifiers** that are good at different parts of the input space.
- **Output class:** (Weighted) vote of each classifier
 - Classifiers that are most “sure” will vote with more conviction
 - Classifiers will be most “sure” about a particular part of the space
 - On average, do better than single classifier!

- **But how do you ??**
 - Force classifiers to learn about different parts of the input space?
 - Weigh the votes of different classifiers?

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote

- On each iteration t:
 - Weight each training example by how incorrectly it was classified
 - Learn a hypothesis – h_t
 - A strength for this hypothesis – α_t

- Final classifier:
 - Practically useful
 - Theoretically interesting
Learning from weighted data

- Sometimes not all data points are equal
 - Some data points are more equal than others
- Consider a weighted dataset
 - $D(i)$ – weight of ith training example (x_i, y_i)
 - Interpretations:
 - ith training example counts as $D(i)$ examples
 - If I were to "resample" data, I would get more samples of "heavier" data points
- Now, in all calculations, whenever used, ith training example counts as $D(i)$ “examples”
 - e.g., MLE for Naïve Bayes, redefine $\text{Count}(Y=y)$ to be weighted count

Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$.

For $t = 1, \ldots, T$:

- Train weak learner using distribution D_t.
- Get weak classifier $h_t : X \rightarrow \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$.
- Update:
 $$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

 where Z_t is a normalization factor
 $$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Output the final classifier:

$$H(x) = \text{sign} \left(\sum_{d=1}^{T} \alpha_d h_d(x) \right).$$

Figure 1: The boosting algorithm AdaBoost.
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\).

For \(t = 1, \ldots, T\):

- Train base learner using distribution \(D_t\).
- Get base classifier \(h_t: X \to \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_y h_t(x_i))}{Z_t}
\]

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]

\[
\epsilon_t = P_{i \sim D_t(i)}[h_t(x_i) \neq y_i]
\]

\[
\epsilon_t = \sum_{i=1}^m D_t(i) \delta(h_t(x_i) \neq y_i)
\]

What \(\alpha_t\) to choose for hypothesis \(h_t\)?

[Schapire, 1989]

Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^m \exp(-y_i f(x_i))
\]

Where \(f(x) = \sum_l \alpha_l h_l(x); H(x) = \text{sign}(f(x))\)
Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_t Z_t
\]

Where \(f(x) = \sum_t \alpha_t h_t(x) \); \(H(x) = \text{sign}(f(x)) \)

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

What \(\alpha_t \) to choose for hypothesis \(h_t \)?

[Schapire, 1989]

If we minimize \(\prod_t Z_t \), we minimize our training error.

We can tighten this bound greedily, by choosing \(\alpha_t \) and \(h_t \) on each iteration to minimize \(Z_t \):

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]
What α_t to choose for hypothesis h_t?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

You'll prove this in your homework! ☺

Strong, weak classifiers

- If each classifier is (at least slightly) better than random
 - $\epsilon_t < 0.5$

- AdaBoost will achieve zero training error (exponentially fast):

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} (1/2 - \epsilon_t)^2 \right)$$

- Is it hard to achieve better than random training error?
Boosting results – Digit recognition

- Boosting often
 - Robust to overfitting
 - Test set error decreases even after training error is zero

Boosting generalization error bound

\[
\text{error}_{\text{true}}(H) \leq \text{error}_{\text{train}}(H) + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right)
\]

- \(T \) – number of boosting rounds
- \(d \) – VC dimension of weak learner, measures complexity of classifier
- \(m \) – number of training examples
Boosting generalization error bound

\[
\text{error}_{\text{true}}(H) \leq \text{error}_{\text{train}}(H) + O\left(\sqrt{\frac{Td}{m}}\right)
\]

Contradicts: Boosting often
- Robust to overfitting
- Test set error decreases even after training error is zero

Need better analysis tools
- we’ll come back to this later in the semester

- \(T\) – number of boosting rounds
- \(d\) – VC dimension of weak learner, measures complexity of classifier
- \(m\) – number of training examples

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:

\[P(\mathcal{D}|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_if(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss
\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

Boosting minimizes similar loss function!!
\[\frac{1}{m} \sum_{i} \exp(-y_if(x_i)) = \prod_t Z_t \]

Both smooth approximations of 0/1 loss!

Logistic regression and Boosting

Logistic regression:
- Minimize loss fn
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
- Define
 \[f(x) = \sum_{j} w_j x_j \]
 where \(x_j \) predefined

Boosting:
- Minimize loss fn
 \[\sum_{i=1}^{m} \exp(-y_if(x_i)) \]
- Define
 \[f(x) = \sum_t \alpha_t h_t(x) \]
 where \(h_t(x) \) defined dynamically to fit data
 (not a linear classifier)
- Weights \(\alpha_t \) learned incrementally
What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier