OK… now we’ll learn to pick those darned parameters…

- Selecting features (or basis functions)
 - Linear regression
 - Naïve Bayes
 - Logistic regression

- Selecting parameter value
 - Prior strength
 - Naïve Bayes, linear and logistic regression
 - Regularization strength
 - Naïve Bayes, linear and logistic regression
 - Decision trees
 - MaxpChance, depth, number of leaves
 - Boosting
 - Number of rounds

More generally, these are called **Model Selection** Problems

Today:
- Describe basic idea
- Introduce very important concept for tuning learning approaches: **Cross-Validation**
Test set error as a function of model complexity

Simple greedy model selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select next best feature X_{i^*}
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_{i^*}\}$
 - Recurse
Greedy model selection

- Applicable in many settings:
 - Linear regression: Selecting basis functions
 - Naïve Bayes: Selecting (independent) features \(P(X_i|Y) \)
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand

- Only a heuristic!
 - But, sometimes you can prove something cool about it
 - e.g., [Krause & Guestrin ’05]: Near-optimal in some settings that include Naïve Bayes

- There are many more elaborate methods out there

Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select next best feature \(X_i^* \)
 - e.g., \(X_i \) that results in lowest training error learner when learning with \(F_t \{D[X_i] \} \)
 - \(F_t, \tilde{F}_t \{X_i^*\} \)
 - Recurse

When do you stop???
- When training error is low enough?

No, beware you overfit
Simple greedy model selection algorithm

Greedy heuristic:

- Select next best feature X_i^*
 - e.g., X_i that results in lowest training error
 learner when learning with $F_t [\{X_i^*\}]$

- $F_t \rightarrow \{ F \}$
- Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?

NEVER!! \(\rightarrow \) overfit to test data

Validation set

Thus far: Given a dataset, randomly split it into two parts:

- Training data – \(\{ x_1, \ldots, x_{N_{train}} \} \)
- Test data – \(\{ x_1, \ldots, x_{N_{test}} \} \)

But Test data must always remain independent!

- Never ever ever ever learn on test data, including for model selection

Given a dataset, randomly split it into three parts:

- Training data – \(\{ x_1, \ldots, x_{N_{train}} \} \)
- Validation data – \(\{ x_1, \ldots, x_{N_{valid}} \} \)
- Test data – \(\{ x_1, \ldots, x_{N_{test}} \} \)

Use validation data for tuning learning algorithm, e.g., model selection

- Save test data for very final evaluation
Simple greedy model selection algorithm

- Greedy heuristic:
 - Select next best feature \(X_i^* \)
 - e.g., \(X_i \) that results in lowest training error learner when learning with \(F_t(\{X\}) \)
 - \(F_{t+1} \rightarrow \{X_i^*\} \)
 - Recurse

- When do you stop???
 - When training error is low enough?
 - When test set error is low enough?
 - When validation set error is low enough?

Validating a learner, not a hypothesis
(disclaimer: intuition only, not proof)

- With a validation set, get to estimate error of 1 hypothesis on 1 dataset
 \[D \Rightarrow h_D \Rightarrow \text{use Val Set} \]
 \[\text{val. error}(h_D) \rightarrow \text{unbiased estimate of error of this hypothesis} \]

- Need to estimate error of learner over multiple datasets to select parameter
 - Think variance
 \[E_D[\text{error}(h_D)] \rightarrow \text{expected error over possible datasets} \]
Simple greedy model selection algorithm

- Greedy heuristic:
 - Select next best feature X_i^*
 - e.g., X_j that results in lowest training error learner when learning with $F_t \{ X_i \}$
- $F_t \rightarrow F_{t+1} \{ X_i^* \}$
- Recurse

When do you stop???
- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- Man!!! OK, should I just repeat until I get tired???
 - I am tired now...
 - No, “There is a better way!”

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
 - D: training data
 - D_i: training data with ith data point moved to validation set
- Learn classifier h_{D_i} with D_i dataset
- Estimate true error as:
 - 0 if h_{D_i} classifies ith data point correctly
 - 1 if h_{D_i} is wrong about ith data point
 - Seems really bad estimator, but wait!
- LOO cross validation: Average over all data points i:
 - For each data point you leave out, learn a new classifier h_{D_i}
 - Estimate error as:
 \[error_{LOO} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}(h_{D \setminus i}(x^i) \neq y^i) \]
LOO cross validation is (almost) unbiased estimate of true error!

- When computing **LOOCV error**, we only use \(m-1 \) data points
 - So it’s not estimate of true error of learning with \(m \) data points!
 - Usually pessimistic, though – learning with less data typically gives worse answer

- **LOO is almost unbiased!**
 - Let \(\text{error}_{true,m-1} \) be true error of learner when you only get \(m-1 \) data points
 - LOO is unbiased estimate of \(\text{error}_{true,m-1} \):
 \[
 E_D[\text{error}_{LOO}] = \text{error}_{true,m-1}
 \]

- Great news!
 - Use LOO error for model selection!!!

Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** \(X_i^* \)
 - e.g., \(X_i \) that results in lowest training error learner when learning with \(F_t \{ X_i \} \)
 - \(F_{t+1} = F_t \{ X_i^* \} \)
 - **Recurse**

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- **STOP WHEN error_{LOO} IS LOW!!!**
Using LOO error for model selection

Suppose you have 100,000 data points
You implemented a great version of your learning algorithm
 - Learns in only 1 second
Computing LOO will take about 1 day!!!
 - If you have to do for each choice of basis functions, it will take foooooddee!!
Solution 1: Preferred, but not usually possible
 - Find a cool trick to compute LOO (e.g., see homework)
Solution 2 to complexity of computing LOO:

(More typical) **Use k-fold cross validation**

- Randomly divide training data into k equal parts
 - D_1, \ldots, D_k
- For each i
 - Learn classifier $h_{D\setminus D_i}$ using data point not in D_i
 - Estimate error of $h_{D\setminus D_i}$ on validation set D_i

$$\text{error}_{D_i} = \frac{k}{m} \sum_{(x^j, y^j) \in D_i} 1\{h_{D\setminus D_i}(x^j) \neq y^j\}$$

- **k-fold cross validation error is average** over data splits:

$$\text{error}_{k-fold} = \frac{1}{k} \sum_{i=1}^{k} \text{error}_{D_i}$$

- **k-fold cross validation properties:**
 - Much faster to compute than LOO
 - More (pessimistically) biased – using much less data, only $m(k-1)/k$
 - Usually, $k = 10$ 😊

Announcements

- **Midterm:**
 - Wean 7500 on Thursday Oct 29 5-7pm

- **Office hours**
 - Please be mindful of your TAs and limit interruptions to office hours

©Carlos Guestrin 2005-2009
Regularization – Revisited

- Model selection 1: **Greedy**
 - Pick subset of features that have yield low LOO error
- Model selection 2: **Regularization**
 - Include all possible features!
 - Penalize “complicated” hypothesis

Regularization in linear regression

Overfitting usually leads to very large parameter choices, e.g.:

-2.2 + 3.1 X – 0.30 X^2
-1.1 + 4,700,910.7 X – 8,585,638.4 X^2 + ...

Regularized least-squares (a.k.a. ridge regression), for \(\lambda > 0 \):

\[
\mathbf{w}^* = \arg \min_{\mathbf{w}} \sum_j \left(t(x_j) - \sum_t w^t(x_j) \right)^2 + \lambda \sum_{l=1}^k w_l^2
\]

I will only make \(w_l \) large if it helps reduce error.
Other regularization examples

- **Logistic regression regularization**
 - Maximize data likelihood minus penalty for large parameters
 - \(\arg \max_w \sum \ln P(y_i|x_i, w) - \lambda \sum w_i^2 \)
 - Biases towards small parameter values

- **Naïve Bayes regularization**
 - Prior over likelihood of features
 - Biases away from zero probability outcomes

- **Decision tree regularization**
 - Many possibilities, e.g., Chi-Square test and MaxPValue parameter
 - Biases towards smaller trees

- **Sparsity**: find good solution with few basis functions, e.g.:
 - Simple greedy model selection from earlier in the lecture
 - L1 regularization, e.g.:
 \[w^* = \arg \min_w \sum \left(t(x_i) - \sum_i w_i h_i(x_i) \right)^2 + \lambda \sum_{i=1}^n |w_i| \]

Geometric intuition of L2 regularization

\[w = (w_1, w_2) \]
\[w^* = \arg \min_w \sum \left(t(x_i) - \sum_i w_i h_i(x_i) \right)^2 + \lambda \sum_{i=1}^n w_i^2 \]
\[E(w) = e_0 + e_1 w_1 + e_2 w_2 + e_3 w_1 w_2 + e_4 w_1^2 + e_5 w_2^2 \]
\[R(w) = \lambda \|w\|^2 \]

Can't ignore \(w_i \) small, but \(w_i \) be large when compared to \(e_0 \)

\(w_1 \) is large
\(w_2 \) small but not 0
Geometric intuition of L1 regularization

\[w^* = \arg \min_w \sum_j \left(t(x_j) - \sum_k w_k h_k(x_j) \right)^2 + \lambda \sum_{m=1}^b |h_m| \]

How do we pick magic parameter?

Cross Validation!!!!

\(\lambda \) in Linear/Logistic Regression
(analogously for # virtual examples in Naïve Bayes, MaxPvalue in Decision Trees)
Regularization and Bayesian learning

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

- We already saw that regularization for logistic regression corresponds to MAP for zero mean, Gaussian prior for \(w \)

- Similar interpretation for other learning approaches:
 - **Linear regression**: Also zero mean, Gaussian prior for \(w \)
 - **Naive Bayes**: Directly defined as prior over parameters
 - **Decision trees**: Trickier to define… but we’ll get back to this

Occam’s Razor

- William of Ockham (1285-1349) Principle of Parsimony:
 - “One should not increase, beyond what is necessary, the number of entities required to explain anything.”
 - Regularization penalizes for “complex explanations”

- Alternatively (but pretty much the same), use Minimum Description Length (MDL) Principle:
 - minimize \(\text{length}(\text{misclassifications}) + \text{length}(\text{hypothesis}) \)

- \(\text{length}(\text{misclassifications}) \) – e.g., #wrong training examples
- \(\text{length}(\text{hypothesis}) \) – e.g., size of decision tree
Minimum Description Length Principle

MDL prefers small hypothesis that fit data well:

\[h_{MDL} = \arg \min_h \frac{L_{C_1}(D | h)}{C_1} + \frac{L_{C_2}(h)}{C_2} \]

- \(L_{C_1}(D | h) \) – description length of data under code \(C_1 \) given \(h \)
 - Only need to describe points that \(h \) doesn’t explain (classify correctly)
- \(L_{C_2}(h) \) – description length of hypothesis \(h \)

Decision tree example

- \(L_{C_1}(D | h) \) – #bits required to describe data given \(h \)
 - If all points correctly classified, \(L_{C_1}(D | h) = 0 \)
- \(L_{C_2}(h) \) – #bits necessary to encode tree
- Trade off quality of classification with tree size

Bayesian interpretation of MDL Principle

- MAP estimate

\[h_{MAP} = \arg \max_h \{ P(D | h)P(h) \} \]

\[= \arg \max_h \{ \log_2 P(D | h) + \log_2 P(h) \} \]

\[= \arg \min_h \{ -\log_2 P(D | h) - \log_2 P(h) \} \]

- Information theory fact:
 - Smallest code for event of probability \(p \) requires \(-\log_2 p\) bits

- MDL interpretation of MAP:
 - \(-\log_2 P(D | h)\) – length of \(D \) under hypothesis \(h \)
 - \(-\log_2 P(h)\) – length of hypothesis \(h \) (there is hidden parameter here)
 - MAP prefers simpler hypothesis:
 - minimize length(misclassifications) + length(hypothesis)

- In general, Bayesian approach usually looks for simpler hypothesis – Acts as a regularizer
What you need to know about Model Selection, Regularization and Cross Validation

- Cross validation
 - (Mostly) Unbiased estimate of true error
 - LOOCV is great, but hard to compute
 - k-fold much more practical
 - Use for selecting parameter values!

- Model selection
 - Search for a model with low cross validation error

- Regularization
 - Penalizes for complex models
 - Select parameter with cross validation
 - Really a Bayesian approach

- Minimum description length
 - Information theoretic interpretation of regularization
 - Relationship to MAP