OK... now we’ll learn to pick those darned parameters...

- Selecting features (or basis functions)
 - Linear regression
 - Naïve Bayes
 - Logistic regression

- Selecting parameter value
 - Prior strength
 - Naïve Bayes, linear and logistic regression
 - Regularization strength
 - Naïve Bayes, linear and logistic regression
 - Decision trees
 - MaxpChance, depth, number of leaves
 - Boosting
 - Number of rounds

- More generally, these are called Model Selection Problems

Today:
- Describe basic idea
- Introduce very important concept for tuning learning approaches: Cross-Validation
Test set error as a function of model complexity

Simple greedy model selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select next best feature X_i^*
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
 - Recurse
Greedy model selection

- Applicable in many settings:
 - Linear regression: Selecting basis functions
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand

- Only a heuristic!
 - But, sometimes you can prove something cool about it
 - e.g., [Krause & Guestrin ’05]: Near-optimal in some settings that include Naïve Bayes

- There are many more elaborate methods out there

Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select next best feature X^*_i
 - e.g., X_i that results in lowest training error learner when learning with $F_i \cup \{X\}$
 - $F_{i+1} \leftarrow F_i \cup \{X^*_i\}$
 - Recurse

 When do you stop???
 - When training error is low enough?
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select next best feature X^*_i
 - e.g., X^*_i that results in lowest training error learner when learning with $F_t \cup \{X^*_i\}$
 - $F_{t+1} \leftarrow F_t \cup \{X^*_i\}$
 - Recurse

When do you stop???
- When training error is low enough?
- When test set error is low enough?

Validation set

- Thus far: Given a dataset, randomly split it into two parts:
 - Training data – $\{x_1, \ldots, x_{N_{train}}\}$
 - Test data – $\{x_{N_{train}+1}, \ldots, x_{N_{test}}\}$
- But Test data must always remain independent!
 - Never ever ever ever learn on test data, including for model selection
- Given a dataset, randomly split it into three parts:
 - Training data – $\{x_1, \ldots, x_{N_{train}}\}$
 - Validation data – $\{x_{N_{train}+1}, \ldots, x_{N_{valid}}\}$
 - Test data – $\{x_{N_{valid}+1}, \ldots, x_{N_{test}}\}$
- Use validation data for tuning learning algorithm, e.g., model selection
 - Save test data for very final evaluation
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** X_i^*
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
 - **Recurse**

When do you stop???
- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?

Validating a learner, not a hypothesis (disclaimer: intuition only, not proof)

- With a validation set, get to estimate error of 1 hypothesis on 1 dataset

- Need to estimate error of learner over multiple datasets to select parameter
 - Think variance
Simple greedy model selection algorithm

- Greedy heuristic:
 - Select **next best feature** X_i^*
 - e.g., X_i that results in lowest training error learner when learning with $F_i \cup \{X_i\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i^*\}$
 - **Recurse**

 When do you stop???
 - When training error is low enough?
 - When test set error is low enough?
 - When validation set error is low enough?
 - Man!!! OK, should I just repeat until I get tired???
 - I am tired now...
 - No, “There is a better way!”

(LOO) Leave-one-out cross validation

- Consider a **validation set with 1 example**:
 - D – training data
 - D_i – training data with ith data point moved to validation set
- Learn classifier h_{D_i} with D_i dataset
- Estimate true error as:
 - 0 if h_{D_i} classifies ith data point correctly
 - 1 if h_{D_i} is wrong about ith data point
 - Seems really bad estimator, but wait!
- **LOO cross validation**: Average over all data points i:
 - For each data point you leave out, learn a new classifier h_{D_i}
 - **Estimate error** as:
 $$ error_{LOO} = \frac{1}{m} \sum_{i=1}^{m} 1 \left(h_{D \setminus i}(x^i) \neq y^i \right) $$
LOO cross validation is (almost) unbiased estimate of true error!

- When computing **LOOCV error**, we only use \(m-1 \) data points
 - So it’s not an estimate of true error of learning with \(m \) data points!
 - Usually pessimistic, though – learning with less data typically gives worse answer

- **LOO is almost unbiased!**
 - Let \(error_{true,m-1} \) be the true error of learner when you only get \(m-1 \) data points
 - LOO is an unbiased estimate of \(error_{true,m-1} \):
 \[
 E_D[error_{LOO}] = error_{true,m-1}
 \]

- **Great news!**
 - Use LOO error for model selection!!!

Simple greedy model selection algorithm

- **Greedy heuristic:**
 - ...
 - Select next best feature \(X_i^* \)
 - e.g., \(X_i \) that results in lowest training error learner when learning with \(F_t \cup \{X_i\} \)
 - \(F_{t+1} = F_t \cup \{X_i^*\} \)
 - Recurse

When do you stop??

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- **STOP WHEN** \(error_{LOO} \) **IS LOW!!!**
Using LOO error for model selection

Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
 - Learns in only 1 second
- Computing LOO will take about 1 day!!!
 - If you have to do for each choice of basis functions, it will take fooooreeeve’!!!
- Solution 1: Preferred, but not usually possible
 - Find a cool trick to compute LOO (e.g., see homework)
Solution 2 to complexity of computing LOO:

(More typical) **Use k-fold cross validation**

- Randomly **divide training data into** k *equal parts*
 - D_1, \ldots, D_k
- For each i
 - Learn classifier h_{D_i} using data point not in D_i
 - Estimate error of h_{D_i} on validation set D_i:
 $$error_{D_i} = \frac{k}{m} \sum_{(x^j, y^j) \in D_i} 1(h_{D_i}(x^j) \neq y^j)$$
- **k-fold cross validation error is average** over data splits:
 $$error_{k-fold} = \frac{1}{k} \sum_{i=1}^{k} error_{D_i}$$
- **k-fold cross validation properties:**
 - Much faster to compute than LOO
 - More (pessimistically) biased – using much less data, only $m(k-1)/k$
 - Usually, $k = 10$ 😊

Regularization – Revisited

- **Model selection 1**: Greedy
 - Pick subset of features that have yield low LOO error
- **Model selection 2**: Regularization
 - Include **all possible features**!
 - Penalize “complicated” hypothesis
Regularization in linear regression

- Overfitting usually leads to very large parameter choices, e.g.:

 \[-2.2 + 3.1 X - 0.30 X^2\] \[-1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + \ldots\]

- Regularized least-squares (a.k.a. ridge regression), for \(\lambda \geq 0\):

 \[w^* = \arg \min_w \sum_j \left(t(x_j) - \sum_i w_i h_i(x_j) \right)^2 + \lambda \sum_i w_i^2\]

Other regularization examples

- **Logistic regression** regularization
 - Maximize data likelihood minus penalty for large parameters
 \[\arg \max_w \sum \ln P(y^j | x^j, w) - \lambda \sum_i w_i^2\]
 - Biases towards small parameter values

- **Naive Bayes** regularization
 - Prior over likelihood of features
 - Biases away from zero probability outcomes

- **Decision tree** regularization
 - Many possibilities, e.g., Chi-Square test and MaxPvalue parameter
 - Biases towards smaller trees

- **Sparsity**: find good solution with few basis functions, e.g.:
 - Simple greedy model selection from earlier in the lecture
 - L1 regularization, e.g.:
 \[w^* = \arg \min_w \sum_j \left(t(x_j) - \sum_i w_i h_i(x_j) \right)^2 + \lambda \sum_i |w_i|\]
Geometric intuition of L2 regularization

\[w^* = \arg\min_w \sum \left(t(x_j) - \sum_i w_i h_i(x_j) \right)^2 + \lambda \sum_{i=1}^n w_i^2 \]

Geometric intuition of L1 regularization

\[w^* = \arg\min_w \sum \left(t(x_j) - \sum_i w_i h_i(x_j) \right) + \lambda \sum_{i=1}^n |w_i| \]
How do we pick magic parameter?

Cross Validation!!!!

\(\lambda \) in Linear/Logistic Regression
(analogously for # virtual examples in Naïve Bayes, MaxPvalue in Decision Trees)

Regularization and Bayesian learning

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

- We already saw that regularization for logistic regression corresponds to MAP for zero mean, Gaussian prior for w

- Similar interpretation for other learning approaches:
 - Linear regression: Also zero mean, Gaussian prior for w
 - Naïve Bayes: Directly defined as prior over parameters
 - Decision trees: Trickier to define… but we’ll get back to this
Occam’s Razor

- William of Ockham (1285-1349) *Principle of Parsimony*:
 - “One should not increase, beyond what is necessary, the number of entities required to explain anything.”
- Regularization penalizes for “complex explanations”

- Alternatively (but pretty much the same), use *Minimum Description Length (MDL) Principle*:
 - minimize \(\text{length(misclassifications)} + \text{length(hypothesis)} \)

- \(\text{length(misclassifications)} \) – e.g., #wrong training examples
- \(\text{length(hypothesis)} \) – e.g., size of decision tree

Minimum Description Length Principle

- MDL prefers small hypothesis that fit data well:
 \[
 h_{MDL} = \arg \min_h L_{C_1}(D | h) + L_{C_2}(h)
 \]
- \(L_{C_1}(D|h) \) – description length of data under code \(C_1 \) given \(h \)
 - Only need to describe points that \(h \) doesn’t explain (classify correctly)
- \(L_{C_2}(h) \) – description length of hypothesis \(h \)

- Decision tree example
 - \(L_{C_1}(D|h) \) – #bits required to describe data given \(h \)
 - If all points correctly classified, \(L_{C_1}(D|h) = 0 \)
 - \(L_{C_2}(h) \) – #bits necessary to encode tree
 - Trade off quality of classification with tree size
Bayesian interpretation of MDL Principle

- MAP estimate
 \[h_{MAP} = \arg\max_h [P(D | h)p(h)] \]
 \[= \arg\max_h [\log_2 P(D | h) + \log_2 P(h)] \]
 \[= \arg\min_h [-\log_2 P(D | h) - \log_2 P(h)] \]

- Information theory fact:
 - Smallest code for event of probability \(p \) requires \(-\log_2 p \) bits

- MDL interpretation of MAP:
 - \(-\log_2 P(D|h) \) – length of \(D \) under hypothesis \(h \)
 - \(-\log_2 P(h) \) – length of hypothesis \(h \) (there is hidden parameter here)
 - MAP prefers simpler hypothesis:
 - minimize \(length(\text{misclassifications}) + length(hypothesis) \)

- In general, Bayesian approach usually looks for simpler hypothesis – Acts as a regularizer

What you need to know about Model Selection, Regularization and Cross Validation

- Cross validation
 - (Mostly) Unbiased estimate of true error
 - LOOCV is great, but hard to compute
 - \(k \)-fold much more practical
 - Use for selecting parameter values!

- Model selection
 - Search for a model with low cross validation error

- Regularization
 - Penalizes for complex models
 - Select parameter with cross validation
 - Really a Bayesian approach

- Minimum description length
 - Information theoretic interpretation of regularization
 - Relationship to MAP