Convex Functions, Convex Sets and Quadratic Programs

Sivaraman Balakrishnan
Outline

- Convex sets
 - Definitions
 - Motivation
 - Operations that preserve set convexity
 - Examples

- Convex Function
 - Definition
 - Derivative tests
 - Operations that preserve convexity
 - Examples

- Quadratic Programs
Quick definitions

- Convex set
 - For all x,y in C: $\theta x + (1- \theta) y$ is in C for $\theta \in [0,1]$

- Affine set
 - For all x,y in C: $\theta x + (1- \theta)y$ is in C
 - All affine sets are also convex

- Cones
 - For all x in C: θx is in C $\theta \geq 0$
 - Convex cones: For all x and y in C, $\theta_1 x + \theta_2 y$ is in C
Why do we care about convex and affine sets?

- The basic structure of any convex optimization
 - \(\min f(x) \) where \(x \) is in some convex set \(S \)

- This might be more familiar
 - \(\min f(x) \) where \(g_i(x) \leq 0 \) and \(h_i(x) = 0 \)
 - \(g_i \) is convex function and \(h_i \) is affine

- Cones relate to something called Semi Definite Programming which are an important class of problems
Operations that preserve convexity of sets

- Basic proof strategy
- Ones we saw in class – let's prove them now
 - Intersection
 - Affine
 - Linear fractional
- Others include
 - Projections onto some of the coordinates
 - Sums, scaling
 - Linear perspective
Quick review of examples of convex sets we saw in class

- Several linear examples (halfspaces (not affine), lines, points, \mathbb{R}^n)
- Euclidean ball, ellipsoid
- Norm balls (what about $p < 1$?)
- Norm cone – are these actually cones?
Some simple new examples

- Linear subspace – convex
- Symmetric matrices - affine
- Positive semidefinite matrices – convex cone
- Let's go over the proofs!!
Convex hull

- Definition

- Important lower bound property in practice for non-convex problems – the two cases

- You’ll see a very interesting other way of finding “optimal” lower bounds (duality)
Convex Functions

- Definition
 - $f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)$

- Alternate definition in terms of epigraph
 - Relation to convex sets
Proving a function is convex

- It’s often easier than proving sets are convex because there are more tools
 - First order
 - Taylor expansion (always underestimates)
 - Local information gives you global information
 - Single most beautiful thing about convex functions
 - Second order condition
 - Quadratics
 - Least squares?
Some examples without proofs

- In \mathbb{R}
 - Affine (both convex and concave function) unique
 - Log (concave)

- In \mathbb{R}^n and \mathbb{R}^{mxn}
 - Norms
 - Trace (generalizes affine)
 - Maximum eigenvalue of a matrix

- Many many more examples in the book
 - log sum exp, powers, fractions
Operations that preserve convexity

- Nonnegative multiples, sums
- Affine Composition $f(Ax + b)$
- Pointwise sup – equivalent to intersecting epigraphs
 - Example: $\text{sum}(\max_{1 \ldots r}[x])$
 - Pointwise inf of concave functions is concave
- Composition
- Some more in the book
Quadratic Programs

- Basic structure
- What is different about QPs?
- Lasso QP