Weighted Least-Squares

- Least-squares regression problem:
 - Basis functions: $f_1(x), f_2(x), \ldots, f_n(x)$
 - Find coefficients: w_1, \ldots, w_k
 - Minimize:
 $$\min_w \sum_j (t_j - \sum_i w_i f_i(x))^2$$

- Some points are more important than others:
 - Weighted least-squares:
 $$\min \sum_j \alpha_j (t_j - \sum_i \alpha_i w_i f_i(x))^2$$
 - α_j weight of point j if care more about $j\text{ than } \alpha_j$ is larger...
Robust Least Squares

- Weighted least squares:
 - Test set distribution may be different from training set!
 - Must reweigh according to likelihood ratio:
 \[\alpha_j = \frac{\mathcal{L}(x_j)}{P(\mathcal{L}(x_j))} \]
 - But what is the test set distribution???
- Don’t want to commit!
 - Pick worst case weights!

Robust LS:

\[
\max_{\alpha} \min_w \sum_j \alpha_j (t_j - \mathcal{L}_w(f(x_j)))^2 \\
\quad \alpha > 0 \quad \sum_j \alpha_j = 1
\]

Optimization of Robust LS

- Robust LS problem:
 - For each set of weights, must solve weighted least squares:
 - How do we find worst case weights?
 - Option B : guess weights, solve least squares, tweak weights,…
Equivalent optimization problem

- Robust LS:
 - Pushing min \(w \) into constraint:
 - Non-linear constraint, give up!

Minimum over \(w \) as infinite constraints

- Non-linear min constraint:
 - Infinite constraint set:
 - Good \(L^p \)
 - Bad news: infinitely many constraints
 - Great! Had a non-linear constraint, now all I have are infinite constraints, for each \(w \)!
Constraints for one alpha, help with other alphas

- Suppose you have α_0, and introduce a constraint for some coefficients w_0:
 $$w_0 = \arg\min_w \sum_j c_j (t_j - w_j)^2$$

- Constraint also upper bound for other weights α_i:
 $$\sum_j c_j (t_j - w_j)^2 \leq \varepsilon$$

- Linear constraint! Cool!

A geometric view

- We have an infinite number of linear constraints, many are irrelevant
 - Set of constraints forms a convex set

- Linear program with one constraint per w
 - Still infinite…
Suppose we use a subset of the constraints

- What if we use a finite number of constraints
 - Set of constraints at a finite set of coefficients Ω

\[
\max \sum_{e \in E} \varepsilon \leq \sum_{j} \delta_j (t_j - w_j f_j) \quad \forall w \in \mathcal{W}
\]
\[
d \geq 0 \quad \sum_{j} \delta_j = 1
\]

- Can solve with any LP solver!
- But, solution with subset of constraints may not be a solution to original problem
 - Fewer constraints, solution may be infeasible, value of LP too high…

Active constraints

- Original LP with infinite constraints:

\[
\max \varepsilon \leq \sum_{j} \delta_j (t_j - w_j f_j) \quad \forall w \in \mathcal{W}
\]
\[
d \geq 0 \quad \sum_{j} \delta_j = 1
\]

- How many variables? $n + 1$
- How many active constraints at optimal solution? $n + 1$

- So, if we knew set of active constraints at optimal solution Ω^*
 - Could discard all other constraints

 \[
 \text{solve only using } \Omega^* \quad \text{ignore all other constraints in } K
 \]
Active Constraints at Optimal Point

- Original problem:
 - If we knew set of active constraints at optimal solution \(\Omega^* \)
 - Could discard all other constraints
 - Solution will be feasible with respect to original problem

Consider some set of constraints \(\Omega \):
- Too few, infeasible solution:
 - \(\exists \) a violated constraint:
 - \(\exists \) \(w \) such that \(x^* \notin \Omega \)
 - \(\exists \) \(w \) in such that \(x^* \notin \Omega \)

- Just right, feasible solution:
 - \(\forall \) \(w \) such that \(x^* \in \Omega \)
 - \(x^* \) is optimal

Constraint Generation

- Start with some finite set of constraints \(\Omega \)
 - Solve LP, obtain \(\alpha_\Omega, \varepsilon_\Omega \)

- Check is \((\varepsilon_\Omega, \alpha_\Omega) \) is feasible for infinite constraints:
 - If feasible, done!
 - \(\varepsilon_\Omega = \min \sum_j \alpha_\Omega^j (t_j - w_j) \)
 - \(\varepsilon_\Omega \leq \varepsilon_\Omega \)
 - Otherwise, add a constraint that makes \((\varepsilon_\Omega, \alpha_\Omega) \) infeasible:
 - \(w_{\text{new}} = \alpha_{\text{new}} \sum_j \alpha_\Omega^j (t_j - w_j) \)
 - Why does this new constraint make \((\varepsilon_\Omega, \alpha_\Omega) \) no longer feasible?
 - \(\exists \varepsilon_{\text{new}} \) such that \((\varepsilon_{\text{new}}, \alpha_{\text{new}}) \)

- But how do we find which constraint to add???
Separation Oracle for Robust LS

- Original problem:
 - Is (ε, α) feasible?
 - infeasibility \Rightarrow ε too high for this particular α
 - What's the smallest possible ε?

- Standard weighted LS!
 - If result is ε, then we are done!
 - Otherwise found a violated constraint

Are we there yet?

- When do we stop?
- Solve with infinite set of constraints:
 - Obtain $(\varepsilon_{OPT}, \alpha_{OPT})$
- Solve with constraints Ω
 - Obtain $(\varepsilon_{OPT}, \alpha_{OPT})$
 - Optimizing subset of constraints, same objective
 - $\varepsilon \leq \frac{2}{\sqrt{3}} \max_i \min_j \left(\varepsilon_j - \omega_j f_j \right)^2 \omega - \omega$
- If we get any feasible point with infinite constraints
 - E.g.,
 - Bound on how far we are from optimal solution:
Constraint Generation: The General Case

- Given an LP with (possibly infinitely) many constraints:
 - Start with some subset of the constraints
 - Solve LP to find a solution with new subset of the constraints:
 - Separation oracle:
 - If \(x \) is feasible:
 - \(x \) is optimal
 - If \(x \) is infeasible:
 - \(x \) is violated constraint
 - Add violated constraint to set
 - (It is also possible to remove (some or all) inactive constraints, in addition to adding violated constraints)
 - Makes LP solver step faster
 - But requires more outer loop iterations
 - Trade-off is application specific

Bound on optimal solution - General case

- Problem with many constraints:
 - Some relaxation:
 - E.g., only subset of constraints
 - A subset \(\mathbf{A} \) of the rows
 - \(a \subset \mathbf{A} \) of the rows
 - If you can obtain some feasible point for the original problem:
 - From \(\mathbf{x} \) you can somehow find \(\mathbf{x}_* \)
 - Such that \(\mathbf{A}\mathbf{x}_* \leq \mathbf{b} \)
 - Bound on the optimal solution:
 - \(\mathbf{c}^T \mathbf{x}_* \geq \mathbf{c}^T \mathbf{x}_0 \geq \mathbf{c}^T \mathbf{x} \)
Why constraint generation converges

- LP with many many constraints: but not infinite
- Solve with subset of constraints: (also called “cutting planes”)
- Relaxed problem, bound on objective:
- If solution x_{Ω} is feasible wrt all constraints: $c^T x = c^T x_{opt}$
- If solution x_{Ω} is infeasible wrt all constraints: add a constraint that forces the LP answer x_n to be in Ω

Practicalities of Constraint Generation

- Constraint generation converges in a finite number of iterations if the original set is finite
 - Can’t guarantee fast rate in general, similar to simplex algorithm (there are special cases with good rates)
 - Infinite case: will get arbitrarily close, but not necessarily to the optimum
- Idea of using relaxations to obtain bounds is very useful in general
 - E.g., useful in duality (more later in the semester)
- Separation oracle:
 - Must find some violated constraint
 - If we find most violated constraint, usually faster
 - Also very useful for proving that LPs can be solved in polytime (ellipsoid algorithm, more later)
- Constraint generation is extremely useful in practice
 - Often, e.g., robust LS, we have a poly-time separation oracle, even if there are exponentially or infinitely many constraints
 - Even if polynomially many constraints, a fast oracle can make constraint generation faster than using a standard solver
- Constraint generation can be useful for solving general convex problems, not just LP
- Remember: most LP solvers allow you to start from previous solution (the one found with fewer constraints)
- Make sure you do this, otherwise approach will be much much much slower
Constraint generation and duality

- Primal problem with many constraints:
 \[\max_x \sum_j b_j x_j \]
 \[\text{s.t. } \sum_i a_{ij} x_j \leq c_i, \forall i \in I \]
- Constraint generation: find most important constraints
- What's the dual equivalent?

- Dual:
 \[\min_y c^T y \]
 \[\text{s.t. } a_{ij} y_i = b_j, \forall i \in I \]
 \[y \geq 0 \]
Column generation (aka variable generation)

- Dual problem:
 \[
 \min_y \sum_{i \in I} c_i y_i \\
 \text{s.t.} \sum_{i \in I} a_{ij} y_i = b_j, \ \forall j \in 1, \ldots, m \\
 y_i \geq 0, \ \forall i \in I
 \]

 - Many many variables!!
 - At optimal basic feasible solution
 - Most variables are zero

- Idea:
 - Set most variables to zero
 - Solve problem with other variables
 - Incrementally increase sets of non-zero variables

Solving problem with subset of variables

- Solve problem with subset of variables
 \[
 \min_y \sum_{i \in \Omega} c_i y_i \\
 \text{s.t.} \sum_{i \in \Omega} a_{ij} y_i = b_j, \ \forall j \in 1, \ldots, m \\
 y_i \geq 0, \ \forall i \in \Omega
 \]

 - Rest of variables set to zero

Questions:
- How do we decide what variables to use?
 - Reduced costs, just like Simplex
- How do we decide when we are done?
What variables should we add?

- Same as simplex
 - Solve problem with variables Ω
 - At optimal basic feasible solution, set of basic variables B
 - Find submatrix corresponding to basic variables A_B
 - Cost of these variables c_B
 $$y_B = A_B^{-1} b$$
 $$x_B = \begin{pmatrix} c_B \\ \vdots \\ \vdots \end{pmatrix}$$
 $$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix}$$
 - Reduced cost for each potential new variable y_i, for $i \in I$:
 - If all are positive?
 - Otherwise:
 - Add var i such that $\bar{c}_i < 0$, usually $\arg \min_i \bar{c}_i$.
 - Guaranteed to converge to optimal solution

Column generation summary

- Dual of constraint generation
- Also useful for problems with infinitely many variables
- Some problems
 - Have efficient separation oracles (In these, constraint generation is useful)
 - Have efficient variable generation oracles (In these, column generation is useful)
- Both methods can be useful in polynomially large problems
 - E.g., when constraint matrix is too large to fit in memory
 - By incrementally solving the problem, bound amount of memory needed at each iteration
- If you have many many variables and constraints
 - Can use a combination of constraint and column generation