Weighted Least-Squares

- Least-squares regression problem:
 - Basis functions: \(f_1(x), f_2(x), \ldots, f_n(x) \)
 - Find coefficients: \(w_1, \ldots, w_k \)
 \[
 \min_{w} \sum_j \left(t_j - \sum_i w_i f_i(x_j) \right)^2
 \]

- Some points are more important than others:
 - Weighted least-squares:
 \[
 \min_{w} \sum_j \alpha_j \left(t_j - \sum_i w_i f_i(x_j) \right)^2
 \]
 if care more about \(j \) than \(\alpha_j \) is larger...
Robust Least Squares

- Weighted least squares:
 - Test set distribution may be different from training set!
 - Must reweigh according to likelihood ratio:
 \[\alpha_j = \frac{\epsilon_j(x_j)}{P(x_j)} \]

- But what is the test set distribution???
- Don’t want to commit!
 - Pick worst case weights!
 - Robust LS:
 \[
 \max \alpha \min \sum_j \alpha_j (t_j - \sum_i w_i f_i(x_j))^2 \\
 \alpha > 0 \quad \sum \alpha_j = 1
 \]

Optimization of Robust LS

- Robust LS problem:
 - For each set of weights, must solve weighted least squares:
 - How do we find worst case weights?
 - Option B : guess weights, solve least squares, tweak weights,…
Equivalent optimization problem

- Robust LS:
 - Pushing min w into constraint:
 - Non-linear constraint, give up!

Minimum over w as infinite constraints

- Non-linear min constraint:
 - Infinite constraint set:
 - Great! Had a non-linear constraint, now all I have are infinite constraints, for each w!
Constraints for one alpha, help with other alphas

- Suppose you have α^0, and introduce a constraint for some coefficients w_0:
 - Constraint also upper bound for other weights α:
 - Linear constraint! Cool!

A geometric view

- We have an infinite number of linear constraints, many are irrelevant
 - Set of constraints forms a convex set
 - Linear program with one constraint per w
 - Still infinite…
Suppose we use a subset of the constraints

- What if we use a finite number of constraints
 - Set of constraints at a finite set of coefficients Ω

- Can solve with any LP solver!
- But, solution with subset of constraints may not be a solution to original problem
 - Fewer constraints, solution may be infeasible, value of LP too high…

Active constraints

- Original LP with infinite constraints:
 - How many variables?
 - How many active constraints at optimal solution?

- So, if we knew set of active constraints at optimal solution Ω^*
 - Could discard all other constraints
Active Constraints at Optimal Point

- Original problem:
 - If we knew set of active constraints at optimal solution Ω^*
 - Could discard all other constraints
 - Solution will be feasible with respect to original problem

- Consider some set of constraints Ω:
 - Too few, infeasible solution:
 - Just right, feasible solution:

Constraint Generation

- Start with some finite set of constraints Ω
 - Solve LP, obtain α

- Check is (c_0, α_0) is feasible for infinite constraints:
 - If feasible, done!
 - Otherwise, add a constraint that makes (c_0, α_0) infeasible:

- But how do we find which constraint to add???
Separation Oracle for Robust LS

Original problem:

- Is \((\varepsilon_0, \alpha_0)\) feasible?
 - infeasibility \(\varepsilon_0\) too high for this particular \(\alpha_0\)

- What’s the smallest possible \(\varepsilon\)?

- Standard weighted LS!
 - If result is \(\varepsilon\), then we are done!
 - Otherwise found a violated constraint

Are we there yet?

- When do we stop?
 - Solve with infinite set of constraints:
 - Obtain \((\varepsilon_{opt}, \alpha_{opt})\)

 - Solve with constraints \(\Omega\)
 - Obtain \((\varepsilon_0, \alpha_0)\)

 - Optimizing subset of constraints, same objective

 - If we get any feasible point with infinite constraints
 - E.g.,

 - Bound on how far we are from optimal solution:
Constraint Generation:
The General Case

- Given an LP with (possibly infinitely) many constraints:
 - Start with some subset of the constraints
 - Solve LP to find a solution with new subset of the constraints:
 - Separation oracle:
 - If \(x_\Omega \) is feasible:
 - If \(x_\Omega \) is infeasible:
 - Add violated constraint to set
 - (It is also possible to remove (some or all) inactive constraints, in addition to adding violated constraints)
 - Makes LP solver step faster
 - But requires more outer loop iterations
 - Trade-off is application specific

Bound on optimal solution - General case

- Problem with many constraints:
 - Some relaxation:
 - E.g., only subset of constraints
 - If you can obtain some feasible point for the original problem:
 - Bound on the optimal solution:
Why constraint generation converges

- LP with many many constraints:
 - Solve with subset of constraints:
 - (also called “cutting planes”)
 - Relaxed problem, bound on objective:
 - If solution x_Ω is feasible wrt all constraints:
 - If solution x_Ω is infeasible wrt all constraints:

Practicalities of Constraint Generation

- Constraint generation converges in a finite number of iterations if the original set is finite
 - Can’t guarantee fast rate in general, similar to simplex algorithm (there are special cases with good rates)
 - Infinite case: will get arbitrarily close, but not necessarily to the optimum
- Idea of using relaxations to obtain bounds is very useful in general
 - E.g., useful in duality (more later in the semester)
- Separation oracle:
 - Must find some violated constraint
 - If we find most violated constraint, usually faster
 - Also very useful for proving that LPs can be solved in polytime (ellipsoid algorithm, more later)
- Constraint generation is extremely useful in practice
 - Often, e.g., robust LS, we have a poly-time separation oracle, even if there are exponentially or infinitely many constraints
 - Even if polynomially many constraints, a fast oracle can make constraint generation faster than using a standard solver
- Constraint generation can be useful for solving general convex problems, not just LP
- Remember: most LP solvers allow you to start from previous solution
 - (the one found with fewer constraints)
 - Make sure you do this, otherwise approach will be much much much slower
Constraint generation and duality

- Primal problem with many constraints:
 \[
 \max_x \sum_j b_j x_j \\
 s.t. \quad \sum_j a_{ij} x_j \leq c_i, \quad \forall i \in I
 \]
 - Constraint generation: find most important constraints
 - What’s the dual equivalent?

- Dual:
Column generation
(aka variable generation)

- Dual problem:
 \[\min_y \sum_{i \in I} c_i y_i \]
 \[s.t. \] \[\sum_{i \in I} a_{ij} y_i = b_j, \quad \forall j \in 1, \ldots, m \]
 \[y_i \geq 0, \quad \forall i \in I \]

 - Many many variables!!
 - At optimal basic feasible solution
 - Most variables are zero

- Idea:
 - Set most variables to zero
 - Solve problem with other variables:
 - Incrementally increase sets of non-zero variables

Solving problem with subset of variables

- Solve problem with subset of variables
 \[\min_y \sum_{i \in \Omega} c_i y_i \]
 \[s.t. \] \[\sum_{i \in \Omega} a_{ij} y_i = b_j, \quad \forall j \in 1, \ldots, m \]
 \[y_i \geq 0, \quad \forall i \in \Omega \]

- Rest of variables set to zero

- Questions:
 - How do we decide what variables to use?
 - How do we decide when we are done?
What variables should we add?

- Same as simplex
- Solve problem with variables Ω
 - At optimal basic feasible solution, set of basic variables B
- Find submatrix corresponding to basic variables A_B
 - Cost of these variables c_B
- Reduced cost for each potential new variable y_i, for $i \in I$:
 - If all are positive?
 - Otherwise:
- Guaranteed to converge to optimal solution

Column generation summary

- Dual of constraint generation
- Also useful for problems with infinitely many variables
- Some problems
 - Have efficient separation oracles
 - In these, constraint generation is useful
 - Have efficient variable generation oracles
 - In these, column generation is useful
- Both methods can be useful in polynomially large problems
 - E.g., when constraint matrix is too large to fit in memory
 - By incrementally solving the problem, bound amount of memory needed at each iteration
- If you have many many variables and constraints
 - Can use a combination of constraint and column generation