The geometry of LP solutions

Optimization - 10725
Carlos Guestrin
Carnegie Mellon University
January 25th, 2008

The Simplex alg walks from vertex to vertex. Why??
Understanding the Geometry of LPs

- Today’s lecture: Understanding geometry of LPs

- Focus on inequality constraints, but works with equalities too
 - A few hints along the way

- Provides the foundation for
 - LP formulations
 - Duality
 - Solution methods
 - Conquering the world

The Polyhedron*

- Definition:
 - *Inequality constraints*
 - (Can also contain equalities)

- Visualization

* Sometimes called polytope, nobody can agree on the definition
Extreme Points of a Polyhedron

- Extreme points cannot be represented as a linear combination of two other points in polyhedron
- Examples:

Intuition about extreme points

- An extreme point for a polyhedron in \mathbb{R}^n is:
 - A feasible point
 - The unique intersection of n linearly independent hyperplanes
Active constraints

- Given an LP
 - E.g.,

- An inequality constraint is active at a point x^* if the constraint holds with equality

- BTW. If x^* is a feasible point, then the equality constraints will always be active

Basic solutions

- Consider a polytope:

- Given a set of n linearly independent active constraints

- Basic solution: unique solution for the resulting linear system of linearly independent constraints

- Basic feasible solution: a basic solution that satisfies all constraints

- BTW. In standard form, a basic feasible solution:
 - Satisfies m equality constraints, and
 - $n-m$ inequality constraints \Rightarrow
Existence of basic feasible solutions

- Consider a polyhedron P
 - When does a basic feasible solution exist?

- Theorem: If polyhedron is not empty, and there are at least \(n \) linearly independent constraints, then there exists at least one basic feasible solution.

Basic feasible solutions and Extreme points

- Basic feasible solution \(x^* \):
 - Feasible point
 - Unique solution to \(n \) linearly independent

- Extreme point \(x^* \):
 - Cannot be written as a linear combination of other points in polyhedron

- Definitions are quite different
- Theorem: \(x^* \) is a basic feasible solution if and only if \(x^* \) is an extreme point
Vertices of a polyhedron

- A vertex \(x^* \) of a polyhedron \(P \)
 - A point in \(P \) that is uniquely optimal for some objective function \(c \)

- Brings objective function back into the game!

Formally, \(x^* \) is a vertex of \(P \), if
 - \(x^* \) is in \(P \)
 - There exists a cost vector \(c \), such that
 - Cost of \(x^* \) is strictly lower than all other point \(y \) in \(P \)

Vertices, extreme points and basic feasible solutions...

- Extreme points:
 -

- Basic feasible solutions:
 -

- Vertices:
 -

- Very different...

- Theorem:
 - Proof:
 - E.g., \(x^* \) vertex \(\Rightarrow \) \(x^* \) extreme point
 - By definition, if \(x^* \) is a vertex:
 - Assume \(x^* \) is not an extreme point, then there exists \(y, z \) and \(\lambda \)
 - Since \(x^* \) is a vertex:
 - Thus:
Vertices and Optimal Solutions

- **LP problem:**
 - For every vertex \(x^* \), there is a cost vector \(c \)
 - \(x^* \) is optimal for \(c \)
 - What about the other way?
 - For every cost vector (every LP), does there exist a vertex?

Optimality of extreme points

- **LP:**
 - If \(P \)
 - has at least one extreme point, and
 - there exists an optimal solution
 - then there exists an optimal solution which is an extreme point of \(P \)
 - **Proof:**
 - Optimal value \(v \):
 - Set of optimal solutions \(Q \):
 - \(Q \) has extreme points:
 - \(x^* \) is an extreme point of \(Q \), then \(x^* \) is an extreme point of \(P \)

There are more general results in the readings.
What you need to know

- The Polyhedron
- Extreme Points
- Active constraints
- Basic (feasible) solutions
- Vertices of a polyhedron
 - Brings objective function back into the game!
- Vertices, extreme points and basic feasible solutions:
 - Equivalence
- Optimality of extreme points

Convex Sets

Optimization - 10725
Carlos Guestrin
Carnegie Mellon University
January 25th, 2008
Convex optimization v. Nonlinear optimization

- Linear optimization problems
 - Linear objective, linear constraints
 - Efficient solutions!
- Nonlinear optimization
 - Either nonlinear constraints or objective
 - You will often hear: “problem is nonlinear, no hope to solve it… must use local search, simulated annealing,…”
- Convex optimization
 - Many nonlinear objectives/constraints are convex
 - Efficient solutions
- Real question: “convex v. non-convex?”
 - Not “linear v. nonlinear?”
- Even if problem is non-convex, convexity is useful:
 - Convex relaxations of non-convex problems may have theoretical guarantees
 - Can always obtain convex lower bound to non-convex problem
 - Duality (always) and relaxation (often)
 - Can provide good starting point for local search

Outline to learning about convexity

- General definition of a convex optimization problem:
- Equivalent problem:
- How we’ll learn about these problems:
 1. Convex sets
 2. Convex functions
 3. Important special case: Quadratic programming
 4. Convex optimization problems
 5. Duality and convexity
 6. Algorithms for optimizing convex problems
- Applications will be discussed along the way
- Today: characterizing convex sets and some interesting examples
Definitions of convex sets

- Convex v. Non-convex sets

- Line segment definition:

- Convex combination definition:

- Probabilistic interpretation:
 - If $C \subseteq \mathbb{R}^n$ is convex
 - Define any probability distribution
 - Then

Another view of polyhedra:
Intersection of Halfspaces & Hyperplanes

- Half space:

- Hyperplane:

- Intersection:
Intersection of Convex Sets

- Fundamental Theorem: *Intersection of convex sets is convex*
- What can we say about polyhedra?

Interesting Case: Convex Hull

- A convex combination
 - Convex hull
 - Set of all possible convex combinations

- Interesting fact: "Given set of points in a convex set, their convex hull is contained in this convex set"
General convex hull

- Given some set C

- Convex hull of C, $\text{conv } C$

- Properties of convex hull:
 - Idempotency:

- Usefulness:

Examples of convex sets we have already seen…

- \mathbb{R}^n
- point
- half space
- polyhedron
- line
- line segment
- linear subspace
First non-linear example: Euclidean balls and Ellipsoids

- \(B(x_c, r) \) - ball centered at \(x_c \) centered at \(r \):

- Convexity:

- Ellipsoid:
 - \((x-x_c)^T \Sigma^{-1} (x-x_c) \leq 1 \)
 - \(\Sigma \) is positive semidefinite

Examples of Norm Balls

- Scaled Euclidian (\(L_2 \))
- \(L_1 \) norm (absolute)
- Mahalanobis
- \(L_\infty \) (max) norm
Norm balls

- Convexity of norm balls
 - Properties of norms:
 - Scaling
 - Triangle inequality

- Norm balls are extremely important in ML

- What about achieving a norm with equality?

Cones

- Set \(C \) is a cone if set is invariant to non-negative scaling

- If the cone is convex, we call it:
 - extremely important in ML (as we'll see)

- A cool cone: The ice cream cone
 - a.k.a. second order cone
Positive semidefinite cone

- Positive semidefinite matrices:
 - Positive semidefinite cone:
 - Alternate definition: Eigenvalues

Convexity:

- Examples in ML:
 - A fundamental convex set
 - Useful in a huge number of applications
 - Basis for very cool approximation algorithms
 - Generalizes pretty many “named” convex optimization problems

Operations that preserve convexity 1: Intersection

- Intersection of convex sets is convex

Examples:
 - Polyhedron
 - Robust linear regression
 - Positive semidefinite cone
Operations that preserve convexity 2: Affine functions

- Affine function: \(f(x) = Ax + b \)
- Set \(S \) is convex
 - Image of \(S \) under \(f \) is convex

- Translation:
- Scaling:
- General affine transformation:

Why is ellipsoid convex?
- \((x-x_c)^T \Sigma^{-1} (x-x_c) \leq 1\)
- \(\Sigma \) is positive semidefinite

Operations that preserve convexity 3: Linear-fractional functions

- Linear fractional functions (affine func. over positive linear func.):
 - Closely related to perspective projections (useful in computer vision)

- Given convex set \(C \), image according to linear fractional function:

- Example:
 - Joint distribution:
 - Conditional distribution:
Separating hyperplane theorem

Theorem: Every two non-intersecting convex sets \(C \) and \(D \) have a separating hyperplane:

- Intuition of proof (for special case)
 - Minimum distance between sets:
 - If minimum is achieved in the sets (e.g., both sets closed, and one is bounded), then

Supporting hyperplane

General definition: Some set \(C \subseteq \mathbb{R}^n \)

- Point \(x_0 \) on boundary
 - Boundary is the closure of the set minus its interior
- Supporting hyperplane:
 - Geometrically: a tangent at \(x_0 \)
 - Half-space contains \(C \)

Theorem: for any non-empty convex set \(C \), and any point \(x_0 \) in the boundary of \(C \), there exists (at least one) supporting hyperplane at \(x_0 \)

- (One) **Converse:** If set \(C \) is closed with non-empty interior, and there is a supporting hyperplane at every boundary point, then \(C \) is convex
What you need to know

- Definitions of convex sets
 - Main examples of convex sets
- Proving a set is convex
- Operations that preserve convexity
 - There are many many many other operations that preserve convexity
 - See book for several more examples
- Separating and supporting hyperplanes