Today…

- Want to solve integer program
 - E.g., vars in \(\{0,1\} \)
- Solve convex relaxation
 - E.g., vars in \([0,1]\)
- If minimizing, relaxed objective lower:
 - Somehow round relaxed solution:
 - Can affect feasibility
 - Can affect costs
- Want integer solution:
- Today: some ideas & strategies for rounding
 - See optional books for many more options & details
Integral basic feasible solutions

- **LP:**

 \[
 \begin{align*}
 & \text{min } c^T x \\
 & Ax \geq b \\
 & 0 \leq x \leq 1
 \end{align*}
 \]

- If all optimal basic feasible solutions are integral, we are done!
 - LP relaxation is optimal!!!

- It is sufficient if all basic feasible solutions are integral
 - When does this happen?
 - A sufficient (but not necessary) condition:

 - Basis \(B \rightarrow \text{rows of } A \text{ in basis } A_B \)

 \[
 x = A_B^{-1} b_B
 \]

 - Integral?
 - \(\text{trivial to check} \)

 - Invertible?
 - \(\text{inertial} \)

 - \(\text{easy to kill } A \text{ is integral, but not } A_B \)

 \[
 A_B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \quad A_B^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}
 \]

 \[
 A_B^{-1} b_B = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}
 \]

 \[
 x = A_B^{-1} b_B = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}
 \]

 - Not integral

 \[
 \text{"key problem" in example } |A_B| > 1
 \]
One sufficient (but not necessary) condition: Totally Unimodular matrix

- Structure of inverse of matrix:
 \[D^{-1} = \frac{1}{|D|} \begin{pmatrix} c_1 & \cdots & c_n \\ \vdots & \ddots & \vdots \\ c_1 & \cdots & c_n \end{pmatrix} \]
 \[c_{ij} = (-1)^{i+j} D_{ij} \]
 \[D = \begin{pmatrix} D_{11} & \cdots & D_{1n} \\ \vdots & \ddots & \vdots \\ D_{m1} & \cdots & D_{mn} \end{pmatrix} \]

- Inverse integral if
 - Determinant: \(|D| \in \{-1, 0, 1\} \)
 - Cofactors: \([-1, 0, 1]\) (can be integral)

Relaxations with Totally Unimodular Matrices

- Defn: Matrix \(A \) is totally unimodular if the determinant of every square submatrix is either -1, 0, or 1

\[A \times \mathbb{Z}^n \]

- Thm: If an LP has a totally unimodular constraint matrix \(A \), and the vector \(b \) is integral, then all basic feasible solutions are integral
 - Thus LP relaxation is OPT for integer program
How often do you see totally unimodularity?

- Often
 - Bipartite matching
 - Cuts
 - Maximum margin Markov networks

- Not often
 - \(\mathsf{P=NP} \)

- One thing we can agree: it’s usually not easy to spot…

Sufficient conditions for total unimodularity

Matrix A is totally unimodular if

- All entries are -1, 0, or 1
- Each column contains at most two nonzero elements
- Rows of A can be partitioned into two sets \(A_1 \) and \(A_2 \) such that two nonzero entries in a column are
 - in the same set of rows if they have different signs
 - in different sets of rows if they have the same sign

Maximum bipartite matching:

- Two sets of nodes
 - Edges from nodes i in A to j in B have weight \(w_{ij} \)

- Can be solved exactly by LP, even though it is a combinatorial problem

- Related to \(x_{ij} \geq 0 \) and prove that you get some solution
Relaxations and rounding

- What do we do if we don’t get integral solutions?
 - Because \(\emptyset \notin V \) (quickly)

- E.g., set cover problem
 - Ground elements \(v \in V \)
 - Set of sets \(S \subseteq V \)
 - Cost for sets \(C_S \)
 - Find cheapest collection of subsets that covers all elements

- Integer program and relaxation:

- How can we obtain a good integer (rounded) solution?
 - If we set all nonzero \(x_S \) to one, then
 - Smarter way to round?

©2008-2010 Carlos Guestrin