From relaxations to integral solutions

Optimization - 10725
Carlos Guestrin
Carnegie Mellon University
April 19th, 2010
Today…

- Want to solve integer program
 - E.g., vars in \{0,1\}
- Solve convex relaxation
 - E.g., vars in \([0,1]\)
- If minimizing, relaxed objective lower:

- Want integer solution:
 - Somehow round relaxed solution:
 - Can affect feasibility
 - Can affect costs

- Today: some ideas & strategies for rounding
 - See optional books for many more options & details
Integral basic feasible solutions

- LP:

- If all optimal basic feasible solutions are integral, we are done!
 - LP relaxation is optimal!!!

- It is sufficient if all basic feasible solutions are integral
 - When does this happen?
 - A sufficient (but not necessary) condition:
Integral matrix ➔ Integral inverse?
One sufficient (but not necessary) condition: Totally Unimodular matrix

Structure of inverse of matrix:

- Inverse integral if
 - Determinant:
 - Cofactors:
Relaxations with Totally Unimodular Matrices

- Defn: Matrix A is totally unimodular if the determinant of every square submatrix is either -1, 0, or 1

- Thm: If an LP has a totally unimodular constraint matrix A, and the vector b is integral, then all basic feasible solutions are integral

 Thus
How often do you see totally unimodularity?

- Often
 - Bipartite matching
 - Cuts
 - Maximum margin Markov networks

- Not often

One thing we can agree: it’s usually not easy to spot…
Sufficient conditions for total unimodularity

- Matrix A is totally unimodular if:
 - All entries are -1, 0, or 1
 - Each column contains at most two nonzero elements
 - Rows of A can be partitioned into two sets A_1 and A_2 such that two nonzero entries in a column are:
 - in the same set of rows if they have different signs
 - in different sets of rows if they have the same sign

- Maximum bipartite matching:
 - Two sets of nodes
 - Edges from nodes i in A to j in B have weight w_{ij}
Relaxations and rounding

- What do we do if we don’t get integral solutions?
 - E.g., set cover problem
 - Ground elements
 - Set of Sets
 - Cost for sets
 - Find cheapest collection of subsets that covers all elements

- Integer program and relaxation:

- How can we obtain a good integer (rounded) solution?
 - If we set all nonzero x_s to one, then
Consider a special case…

- Suppose each element in at most k sets
- From inequality constraint:

- Rounding strategy:
- Feasibility:
- Cost of rounded solution:
Very simple example of randomized rounding

- Solve set cover relaxation:
 - Randomly pick a collection of subsets G
 - For each S, add it to G with (independent) probability x_s
 - What’s the expected cost of G?
 - I_s indicator of whether set S is in G
How big can cost get?

- Expected cost is lower than OPT_{IP}
 - But how big can actual cost get?
 - (a simple bound here, more interesting bounds using more elaborate techniques)

- Markov Inequality: Let Y be a non-negative random variable
 - Then

- In our example:
How many elements do we cover?

- Expected cost of G can be lower than OPT_{IP}
 - Must cover fewer elements

- I_v is indicator of whether element v covered by G
- Expected number of elements covered: