From relaxations to integral solutions (cont.)

Optimization - 10725
Carlos Guestrin
Carnegie Mellon University
April 21st, 2010

Relaxations and rounding

What do we do if we don’t get integral solutions?
- Because \(\mathcal{P} \notin \mathcal{NP} \text{ (possibly)} \)
- E.g., set cover problem
 - Ground elements
 - Set of sets
 - Cost for sets \(c_S \)
 - Find cheapest collection of subsets that covers all elements

Integer program and relaxation:

\[
\begin{align*}
\min & \quad \sum_S c_S x_S \\
\text{s.t.} & \quad \forall e \in V, \exists S \in \mathcal{S} \text{ such that } e \in S, \sum_S x_S = 1 \\
\end{align*}
\]

LP relaxation: \(x_S \in [0,1] \)

How can we obtain a good integer (rounded) solution?
- If we set all nonzero \(x_S \) to one, then
- Smarter way to round?
Consider a special case…

- Suppose each element in at most k sets
- From inequality constraint:
 - Rounding strategy:
 - Feasibility:
 - Cost of rounded solution:

Very simple example of randomized rounding

- Solve set cover relaxation:
 - Randomly pick a collection of subsets G
 - For each S, add it to G with (independent) probability x_s
 - What’s the expected cost of G?
 - I_s indicator of whether set S is in G
How big can cost get?

- Expected cost is lower than OPT_{LP}
 - But how big can actual cost get?
 - (a simple bound here, more interesting bounds using more elaborate techniques)

- Markov Inequality: Let Y be a non-negative random variable
 - Then

- In our example:

How many elements do we cover?

- Expected cost of G can be lower than OPT_{LP}
 - Must cover fewer elements

- I_v is indicator of whether element v covered by G
- Expected number of elements covered:
Randomization & Derandomization

MAX-3SAT:
- 3SAT formula:
 - Binary variables X_1, \ldots, X_n
 - Conjunction of clauses C_1, \ldots, C_M
 - Each clause is a disjunction of three literals on three different variables
- Want assignment that maximizes number of satisfied formulas

Randomized algorithm for MAX-3SAT
- Pick assignment for each X_i independently, at random with prob. 0.5
- Expected number of satisfied clauses:
Aside: Probabilistic Method

- Expected number of satisfied clauses:
 - Probabilistic method: for any random var. Y, there exists assignment y such that \(P(y) > 0, y \geq E[Y] \)
 - Almost obvious fact
 - Amazing consequences
 - For example, in the context of MAX-3SAT:

Derandomization

- There exists assignment X that achieves
 - In expectation, we get 7/8.M, but can we get it with prob. 1? Without randomization?
 - Derandomization: From a randomized algorithm, obtain a deterministic algorithm with same guarantees
 - Today: method of conditional expectations
Method of conditional expectations

- Conditional expectation:
 - Expectation of the conditional expectation:
 - Consider MAX-3SAT:
 - Expectation:
 - Expectation of conditional expectation:

Computing conditional expectation

- Conditioning on $X_1 = 1$:

- General case: $X_1 = v_1, \ldots, X_i = v_i$
 - Sum over clauses, I_j is indicator clause j is satisfied
Derandomized algorithm for MAX-3SAT

- For i=1,…,n
 - Try \(X_i = 1 \)
 - Compute
 - Try \(X_i = 0 \)
 - Compute
- Set \(v_i \) to best assignment to \(X_i \)
- Deterministic algorithm guaranteed to achieve at least 7/8.M

Most probable explanation (MPE) in a Markov network

- Markov net:

- Most probable explanation:
 - In general, NP-complete problem, and hard to approximate
MPE for attractive MNs – 2 classes

- Attractive MN:
 - E.g., image classification

- Finding most probable explanation

- Can be solved by

MPE, Attractive MNs, k classes

- MPE for k classes:

 - Multiway cut:
 - Graph G, edge weights w_{ij}
 - Finding minimum cut, separate s_1, \ldots, s_k
Multiway cut – combinatorial algorithm

- Very simple alg:
 - For each \(i=1\ldots k\)
 - Find cut \(C_i\) that separates \(s_i\) from rest
 - Discard \(\text{argmax}_i w(C_i)\), return union of rest

- Algorithm achieves \(2-2/k\) approximation
 - OPT cut \(A^*\) separates graph into \(k\) components
 - No advantage in more than \(k\)
 - From \(A^*\) form \(A_{1^*}, \ldots, A_{k^*}\), where \(A_i^*\) separates \(s_i\) from rest
 - Each edge in \(A^*\) appears in
 - Thus

Multiway cut proof

- Thus, for OPT cut \(A^*\) we have that:

 - Each \(A_i^*\) separates \(s_i\) from rest, thus

- But, can do better, because