Today…

- Thus far, focused on formulating convex problems and gradient methods (first-order)
 - Now: second order and interior point methods
 - Plan: 200 pages of book (Part III) in two lectures

- Focus:
 - Convex functions
 - Twice differentiable

- Overview
 - Unconstrained
 - Equality constraints
 - General convex constraints

Good luck!
Solving unconstrained problems

- Unconstrained problem
- Sequence of points:
 \[x^{(0)}, x^{(1)}, \ldots, x^{(k)}, \ldots \]
 \[f(x^{(k)}) \rightarrow \min \]
- Exactly: Stop when
 \[f(x^{(k)}) = \rho^* \]
- Approximately: Stop when
 \[f(x^{(k)}) - \rho^* \leq \varepsilon \]

Descent methods

- \[x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \]
 - Want: \[f(x^{(k+1)}) < f(x^{(k)}) \]
- From convexity:
 \[f(y) \geq f(x^{(k)}) + \nabla f(x^{(k)})^\top (y - x^{(k)}) \]
 if positive
- Thus: \[\nabla f(x^{(k)})^\top (y - x^{(k)}) \geq 0 \]
 if we pick \(y \) such that \[f(y) > f(x^{(k)}) \]
- Therefore, pick \(\Delta x \) such that:
 \[\Delta x = y - x^{(k)} \]
 \[\nabla f(x^{(k)})^\top (y - x^{(k)}) < 0 \]
 intuively
Generic descent algorithm

- Start from some x in $\text{dom } f$
- Repeat
 - Determine descent direction Δx
 - **Line search** to choose step size t
 - Update: $x \leftarrow x + t \Delta x$
- Until stopping criterion

Good stopping criterion:

- In gradient descent, $\Delta x = -\nabla f(x)$
- $\|\nabla f(x)\|_2 \leq \epsilon$

Exact line search

- Find best step size t:

 \[t = \min_{s \geq 0} f(x^{(k)} + s \Delta x) \]

- Problem is
 - $g(t) = f(x^{(k)} + s \Delta x) \in \mathbb{R}$ convex
 - Sometimes easy to solve in closed form
 - Other times can take a long time
Backtracking line search

- From convexity, lower bound on $f(x+t\Delta x)$:
 \[f(x+t\Delta x) \geq f(x) + t \nabla f(x)^T \Delta x \]
 - Can’t really hope to achieve ideal decrease of
 - Instead pick some $\alpha \in (0,0.5)$
 - And achieve:
 \[f(x^{(\alpha)} + t\Delta x) \leq f(x^{(\alpha)}) + \alpha \nabla f(x^{(\alpha)})^T \Delta x \]

Choosing t:
- $\beta \in (0,1)$

Boyd & Vandenberghe: pick
- α in $[0.01,0.3]$
Analysis of gradient descent

- Linear convergence rate:
 - Geometrically decreasing
 - \[f(x^{(k)}) - p^* \leq c^k (f(x^{(0)}) - p^*) \]
 - Geometrically decreasing in log plot, error decreases below a line...

- Rate \(c \) related to “condition number” of Hessian
 - \(c \equiv 1 - 1/\text{condition number} \)

- For quadratic problem:
 - Condition number is \(\lambda_{\text{max}}/\lambda_{\text{min}} \)

- Gradient descent bad when condition number is large

Observations about descent algorithms

- Observe linear convergence in practice
- Boyd & Vandenberghe: difference often not significant in large dimensional problems
 - May not be worth implementing exact LS when complex

- Condition number can greatly affect convergence
Solving quadratic problems is easy

- Quadratic problem:
 $$\min_x \frac{1}{2} x^T P x + q^T x$$

- Solving equivalent to solving linear system:
 $$\nabla f(x) = 0; \quad \nabla^2 f(x) = P x + q = 0 \implies P x = -q$$

 - If system has at least one solution: done!
 - If system has no solutions: problem is unbounded

- Usually don’t have simple quadratic problems, but…

Newton’s method

- Second order Taylor expansion:
 $$f(x + \Delta x) \approx f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x) \Delta x$$

 - Descent direction, solution to linear system
 $$\nabla^2 f(x) \Delta x = -\nabla f(x)$$
 solve for Δx

- Nice property:
 - We wanted: $\nabla^2 f(x) \Delta x < 0$
 - We get:
 $$\nabla f(x)^T \Delta x + = 0$$
 by convexity $\nabla f(x) \neq 0$
Newton’s method – alg.

- Start from some x in $\text{dom} \ f$
- Repeat
 - Determine descent direction Δx_{nt}
 - solving a linear system $\nabla^2 f(x) \Delta x = -\nabla f(x)$
 - Line search to choose step size t
 - Update: $x \leftarrow x + t \Delta x_{nt}$
- Until stopping criterion

- Good stopping criterion:
 $$\frac{1}{2} \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \leq \epsilon$$
 - $f(x+\Delta x) > f(x) + \nabla f(x)^T \Delta x$ by convexity

Convergence analysis for Newton’s

- Two phases:
 - Gradient is large
 - Damped Newton Phase
 - Step size $t\leq 1$
 - Linear convergence
 - Gradient is small
 - Pure Newton Phase
 - Step size $t=1$
 - Quadratic convergence
 - $\mathcal{O}(\epsilon^2)$
 - Only lasts 6 steps

(Really see book for details.)
Summary on Newton’s

- Converges in very few iterations, especially in quadratic phase
- Invariant to choice of coordinates or affine scaling
 - Very useful property!
- Performs well with problem size, not very sensitive to parameter choices
- Can prove even cooler things when function is smooth
 - E.g., “self-concordance,” see book
 - Many implementation tricks (see book)

But…
- Forming and storing Hessian is quadratic \(O(n^3) \)
 - Can be prohibitive
- Solving linear system can be really expensive \(O(n^2) \)
- Use quasi-Newton methods
 - BFGS and others