Today…

- Thus far, focused on formulating convex problems and gradient methods
 - Now: second order and interior point methods
 - Plan: 200 pages of book (Part III) in two lectures

- Focus:
 - Convex functions
 - Twice differentiable

- Overview
 - Unconstrained
 - Equality constraints
 - General convex constraints
Solving unconstrained problems

- Unconstrained problem
- Sequence of points:
 - Exactly: Stop when
 - Approximately: Stop when

Descent methods

- $x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$
 - Want:
 - From convexity:
 - Thus $\nabla f(x^{(k)})^T (y - x^{(k)}) \geq 0$
 - Therefore, pick Δx such that:
Generic descent algorithm

- Start from some \(x \) in \(\text{dom} \ f \)
- Repeat
 - Determine descent direction \(\Delta x \)
 - **Line search** to choose step size \(t \)
 - Update: \(x \leftarrow x + t \Delta x \)
- Until stopping criterion

Good stopping criterion:

- In gradient descent, \(\Delta x = \)

Exact line search

- Find best step size \(t \):

Problem is

- Sometimes easy to solve in closed form
- Other times can take a long time…
Backtracking line search

- From convexity, lower bound on $f(x+t\Delta x)$:
 - Can’t really hope to achieve ideal decrease of
 - Instead pick some α
 - And achieve:

Choosing t:

Backtracking line search alg.

- Given
 - Point x
 - Descent direction Δx
 - α
 - β
- $t=1$
- While $f(x+t\Delta x)>$
 - $t := \beta t$

- Boyd & Vandenberghe: pick
 - α in [0.01,0.3]
 - β in [0.1,0.8]
Analysis of gradient descent

- (details in book and Geoff’s lecture earlier in semester…)
- Linear convergence rate:
 - \(f(x^{(k)}) - p^* \leq c^k (f(x^{(0)}) - p^*) \)
 - Geometrically decreasing
 - \(c < 1 \)
 - In log plot, error decreases below a line…
- Rate \(c \) related to “condition number” of Hessian
 - \(c \equiv 1 - 1/\text{condition number} \)
- For quadratic problem:
 - Condition number is \(\lambda_{\text{max}}/\lambda_{\text{min}} \)
- Gradient descent bad when condition number is large

Observations about descent algorithms

- Observe linear convergence in practice
- Boyd & Vandenberghe: difference often not significant in large dimensional problems
 - May not be worth implementing exact LS when complex
- Condition number can greatly affect convergence
Solving quadratic problems is easy

- Quadratic problem:
 - Solving equivalent to solving linear system:
 - If system has at least one solution: done!
 - If system has no solutions: problem is unbounded
 - Usually don’t have simple quadratic problems, but…

Newton’s method

- Second order Taylor expansion:
 - Descent direction, solution to linear system

- Nice property:
 - We wanted:
 - We get:
Newton’s method – alg.

- Start from some \(x \) in \(\text{dom } f \)
- Repeat
 - Determine descent direction \(\Delta x_{nt} \)
 - \textbf{Line search} to choose step size \(t \)
 - Update: \(x \leftarrow x + t \Delta x_{nt} \)
- Until stopping criterion

- Good stopping criterion:
 \[
 \frac{1}{2} \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \leq \epsilon
 \]

Convergence analysis for Newton’s

- (Really see book for details.)

- Two phases:
 - Gradient is large
 - Damped Newton Phase
 - Step size \(t<1 \)
 - Linear convergence
 - Gradient is small
 - Pure Newton Phase
 - Step size \(t=1 \)
 - Quadratic convergence
 - \(c^n(2^n) \)
 - Only lasts 6 steps
Summary on Newton’s

- Converges in very few iterations, especially in quadratic phase
- Invariant to choice of coordinates or affine scaling
 - Very useful property!
- Performs well with problem size, not very sensitive to parameter choices
- Can prove even cooler things when function is smooth
 - E.g., “self-concordance,” see book
 - Many implementation tricks (see book)

- But...
 - Forming and storing Hessian is quadratic
 - Can be prohibitive
 - Solving linear system can be really expensive
 - Use quasi-Newton methods

Solving problems with equality constraints

- Equality constraints:
 - Seems very hard
Null space

- Equality constraints:
 - Given one solution:
 - Find other solutions:
 - Since Null Space is a linear subspace:

Eliminating linear equalities

- Equivalent optimization problems:
 - Find basis for null space of A (linear algebra)
 - Solve unconstrained problem
 - A concern…
Solving quadratic problems with equality constraints

- Quadratic problem with equality constraints:
 - KKT condition x^* solution iff
 - Rewriting:

- Solve linear system:
 - Any solution is OPT
 - If no solution, unbounded

Newton’s method with equality constraints

- Quadratic approximation:

- Start feasible, stay feasible:

- KKT:

- Solve linear system:

- Move accordingly: