Backtracking line search alg.

- **Given**
 - Point x
 - Descent direction Δx
 - $\alpha \in (0, 0.5)$
 - $\beta \in (0, 1)$

- $t=1$

- While $f(x+t\Delta x) > f(x) + \alpha t \nabla f(x)^T \Delta x$
 - $t := \beta t$

- **Boyd & Vandenberghe**: pick
 - α in $[0.01, 0.3]$
 - β in $[0.1, 0.8]$

- For every iteration, do line and start from $t=1$
Newton’s method – alg.

- Start from some x in $\text{dom } f$
- Repeat
 - Determine descent direction Δx_{nt}
 - solving a linear system $\nabla^2 f(x) \Delta x = -\nabla f(x)$
 - **Line search** to choose step size t
 - Update: $x \leftarrow x + t \Delta x_{nt}$
- Until stopping criterion

Good stopping criterion:

$$\frac{1}{2} \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \leq \epsilon$$

Convergence analysis for Newton’s

- (Really see book for details.)
- Two phases:
 - Gradient is large
 - Damped Newton Phase
 - Step size $t < 1$
 - Linear convergence
 - Gradient is small
 - Pure Newton Phase
 - Step size $t = 1$
 - Quadratic convergence
 - $c^2(t)$
 - Only lasts 6 steps

©2008-2010 Carlos Guestrin
Proof intuition

Assumptions:
- Strong convexity:
 \(\nabla^2 f(x) \geq m I \quad \forall x \)
- Upper bound on Hessian:
 \[M I \leq \nabla^2 f(x) \]
 Implied by strong convexity
- Hessian of \(f \) is Lipschitz continuous: (bound on third derivative)
 \[\| \nabla^2 f(x) - \nabla^2 f(y) \|_2 \leq L \| x - y \|_2 \]
 \(L \) is Lipschitz constant

Proof shows Newton follows two phases (details in book):
- Constants: \(0 < \alpha < \frac{1}{C} \); \(0 < \gamma < 1 \)
- Damped Newton Phase:
 \[f_k - f_{k+1} \geq \gamma \]
 \[\text{step size } \tau_k \leq \gamma \]
- Pure Newton Phase:
 \[\| \nabla f_k \|_2 \leq \gamma \]
 \[\| \nabla f_{k+1} \|_2 \leq \left(\frac{1}{L\gamma} \| \nabla f_k \|_2 \right)^2 \]

Complexity of Damped Newton Phase

- When gradient is large:
 \[\| \nabla f_k \|_2 \geq \gamma \]

 \[f_k - f_{k+1} \geq \gamma \]

- Relate to suboptimality:
 \[f_0 - p^* = \epsilon_0 \geq 0 \quad \text{initial error} \]

 \[f_k - p^* \leq \epsilon_k - \gamma \]

 \[\frac{\epsilon_k}{\gamma} = \frac{f_0 - p^*}{\delta} \quad \text{steps in damped Newton phase} \]

- Total number of iterations in Damped Newton Phase
 \[\frac{f_0 - p^*}{\delta} \]
Pure Newton Phase

- Proof guarantees that
 - When gradient is small: \(\| \nabla f_k \| \leq \varepsilon \) always in Pure Newton
 - Gradient decreases quadratically:
 \[
 \frac{1}{2m} \| \nabla f_k \| \leq \left(\frac{1}{2m} \| \nabla f_k \| \right)^2
 \]
 - From convexity, can relate gradient to error:
 \[
 \frac{\text{error}}{\| f \|} \leq \frac{1}{2m^2} \| \nabla f_k \|^2 \leq \left(\frac{1}{2m^2} \| \nabla f_k \|^2 \right)^k
 \]
 - Applying bound recursively:
 \[
 \| f_k \| \leq \left(\frac{1}{2m^2} \| \nabla f_k \|^2 \right)^k \leq \left(\frac{1}{2m^2} \| \nabla f_k \|^2 \right)^k \leq \left(\frac{1}{2} \right)^k
 \]

 So, done after 6 iterations!

The power of quadratic convergence

- Linear convergence (e.g., at rate \(\frac{1}{2} \))
 - Bits of precision improve linearly
 \[
 f_k - p^* \leq \varepsilon \left(\frac{1}{2} \right)^k \leq \varepsilon \quad \Rightarrow \quad \log_2 \frac{\varepsilon}{\varepsilon_0} \leq k \quad \text{linearly with iteration}
 \]

- Quadratic convergence (e.g., at rate \(\frac{1}{2} \))
 - Bits of precision improve exponentially:
 \[
 f_k - p^* \leq \varepsilon \left(\frac{1}{2} \right)^k \leq \varepsilon \quad \Rightarrow \quad \log_2 \frac{\varepsilon}{\varepsilon_0} \leq 2k \quad \text{doubles with iteration!}
 \]

 So, done after 6 iterations!

\[\log_2 \log_2 \frac{\varepsilon}{\varepsilon_0} \quad \text{very slow growth} \quad \text{after 6 iterations} \]

\[\varepsilon \approx 5 \times 10^{-20} \]
Putting it all together: Complexity of Newton’s method – Simple Analysis

- **Damped Newton Phase:**

 \[\text{Iterations: } \frac{f_0 - p^*}{\delta} \quad \text{from proof} \quad \delta = \lambda \eta \frac{m}{\eta^2} \]

- **Pure Newton Phase:**

 6 iterations, when
 \[\eta \leq \min \{1, \frac{3(1-2\eta)}{2} \} \frac{m^2}{\epsilon} \]

- **Total:**

 \[\frac{\lambda^2 \epsilon}{\eta \min \{1, \frac{3(1-2\eta)}{2} \} (f_0 - p^*)} + 6 \text{ iterations} \]

 - Bound depends on unknown quantities! 😊

Self-Concordance:

A smoothness assumption

- **Self-concordant function in 1D:**

 \[|f''(x)| \leq \frac{3}{2} (f''(x))^3 \quad \forall x \quad \text{where } f(x) \text{ is self-concorded in } + \text{ for all } x, v \]

 - A bound on the third derivative in terms of the second, rather than unknown constants

- **Example:** \(f(x) = -\log x \)

 \[f''(x) = \frac{1}{x^2}, \quad f'''(x) = -\frac{6}{x^3} \]

 \[\frac{3}{2} \left(\frac{f''(x)}{2} \right)^2 \leq \frac{3}{2} \left(\frac{6}{2x^3} \right)^2 = 1 \quad \text{for } f(x) = -\log x \text{ is perfectly self-concordant} \]
When function is Self-Concordant, Analysis of Newton’s method is very clean!

For self-concordant functions, no constants in bound:

\[\text{# iterations} \leq \frac{f_o - p^*}{\epsilon} + \log \log \frac{1}{\epsilon} \]

For example:

\[\alpha = 0.1, \quad \rho = 0.8 \]

\[\text{# iterations} \leq 3.78 \left(f_o - p^* \right) + 6 \]

In Practice, bounds are loose, but general behavior captured

Bound on \# iterations from previous slide:

\[3.78 \left(f_o - p^* \right) + 6 \]

Example from book:
- Self concordant function
- Empirical bound:
Solving problems with equality constraints

- Equality constraints:
 \[\begin{align*}
 \forall x & \in \mathbb{R}^n \quad f(x) = 0 \\
 \eta & \in \mathbb{R}^m
 \end{align*} \]

- Seems very hard

Null space

- Equality constraints: \(\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{A} \mathbf{x} = \mathbf{b} \)

- Given one solution: \(\mathbf{x}_1 : \mathbf{A} \mathbf{x}_1 = \mathbf{b} \)

- Find other solutions: \(\mathbf{x}_2 = \mathbf{x}_1 + \mathbf{g} \)
 \[\begin{align*}
 \mathbf{A} \mathbf{x}_2 &= \mathbf{A} \mathbf{x}_1 + \mathbf{A} \mathbf{g} \\
 &= \mathbf{b} + \mathbf{b} \\
 &= \mathbf{b}
 \end{align*} \]

- Since Null Space is a linear subspace:
 \[\mathbf{N}(\mathbf{A}) = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A} \mathbf{x} = \mathbf{0} \right\} \]
 \[\mathbf{N}(\mathbf{A}) = \left\{ \mathbf{x} + \mathbf{F} \mathbf{z} \mid \mathbf{z} \in \mathbb{R}^k \right\} \]

\[\mathbf{F} \] is a basis for \(\mathbf{N}(\mathbf{A}) \)
Eliminating linear equalities

- Equivalent optimization problems:
 \[
 \min_x f(x) \quad \text{subject to} \quad Ax = b, \quad x \in \mathbb{R}^n
 \]

- Find basis for null space of A (linear algebra)
 - Solve unconstrained problem
 \[
 \begin{bmatrix}
 A \\
 \end{bmatrix} \begin{bmatrix}
 x \\
 \end{bmatrix} = \begin{bmatrix}
 b \\
 \end{bmatrix}
 \]

- A concern…
 - e.g., A structure, e.g., sparsity
 - F could lose sparsity

Solving quadratic problems with equality constraints

- Quadratic problem with equality constraints:
 \[
 \min_x \frac{1}{2} x^T P x + \epsilon x
 \]

- KKT condition \(x^* \) solution iff
 \[
 \begin{array}{c}
 \text{feasibility:} \\
 \text{grad} \text{ minimizing} \\
 A x = b, \quad \epsilon (x^t) + A^t v^* = 0 \\
 P x^* + \epsilon x^* + A^t v^* = 0 \quad \text{c} \\
 \end{array}
 \]

- Rewriting:
 \[
 \begin{bmatrix}
 P & A^t \\
 A & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 x^t \\
 v^* \\
 \end{bmatrix}
 = \begin{bmatrix}
 \epsilon \\
 b \\
 \end{bmatrix}
 \]

- Solve linear system:
 - Any solution is OPT
 - If no solution, unbounded
Newton’s method with equality constraints

- Quadratic approximation:
 \[
 f(x + \Delta x) = f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x) \Delta x
 \]
- Start feasible, stay feasible:
 \[
 x^{(n)} = x^{(n)} + t \Delta x \Rightarrow A x^{(n)} + t \Delta x \leq b
 \]
- KKT:
 \[
 \begin{bmatrix}
 \nabla^2 f(x) & A^T \\
 A & 0
 \end{bmatrix}
 \begin{bmatrix}
 \Delta x^f \\
 w
 \end{bmatrix}
 =
 \begin{bmatrix}
 -\nabla f(x) \\
 0
 \end{bmatrix}
 \]
- Solve linear system:
- Move accordingly:
 \[
 x^{(n+1)} = x^{(n)} + t \Delta x^f
 \]
 (always remain feasible)