Second Order Methods for Solving Convex Problems (cont.)

Optimization - 10725
Carlos Guestrin
Carnegie Mellon University
April 7th, 2010

Backtracking line search alg.

- **Given**
 - Point `x`
 - Descent direction `Δx`
 - `α ∈ (0, 0.5)`
 - `β ∈ (0,1)`
- `t=1`
- While `f(x + tΔx) > f(x) + αt∇f(x)Δx`
 - `t := βt`

Boyd & Vandenberghe: pick
- `α` in `[0.01, 0.3]`
- `β` in `[0.1, 0.8]`
Newton’s method – alg.

- Start from some \(x \) in \(\text{dom} \ f \)
- Repeat
 - Determine descent direction \(\Delta x_{nt} \)
 - Solving a linear system \(\nabla^2 f(x) \Delta x = -\nabla f(x) \)
 - Line search to choose step size \(t \)
 - Update: \(x \leftarrow x + t \Delta x_{nt} \)
- Until stopping criterion

Good stopping criterion:
\[
\frac{1}{2} \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \leq \epsilon \]

Convergence analysis for Newton’s

- (Really see book for details.)

Two phases:
- Gradient is large
 - Damped Newton Phase
 - Step size \(t<1 \)
 - Linear convergence
 - Gradient is small
 - Pure Newton Phase
 - Step size \(t=1 \)
 - Quadratic convergence
 - \(c^2 \) by exp
 - Only lasts 6 steps
Proof intuition

- Assumptions:
 - Strong convexity:
 - Upper bound on Hessian:
 - Implied by strong convexity
 - Hessian of f is Lipschitz continuous: (bound on third derivative)

- Proof shows Newton follows two phases (details in book):
 - Constants:
 - Damped Newton Phase:
 - Pure Newton Phase:

Complexity of Damped Newton Phase

- When gradient is large:
 - Relate to suboptimality:
 - Total number of iterations in Damped Newton Phase
Pure Newton Phase

- Proof guarantees that
 - When gradient is small:
 - Gradient decreases quadratically:
 - From convexity, can relate gradient to error:
 - Applying bound recursively:

The power of quadratic convergence

- Linear convergence (e.g., at rate ½)
 - Bits of precision improve linearly

- Quadratic convergence (e.g., at rate ½)
 - Bits of precision improve exponentially:
 - So, done after 6 iterations!
Putting it all together: Complexity of Newton’s method – Simple Analysis

- Damped Newton Phase:

- Pure Newton Phase:

- Total:
 - Bound depends on unknown quantities! 😊

Self-Concordance:
A smoothness assumption

- Self-concordant function in 1D:
 - A bound on the third derivative in terms of the second, rather than unknown constants
 - Example: $f(x) = -\log x$
When function is Self-Concordant,
Analysis of Newton’s method is very clean!

- For self-concordant functions, no constants in bound:

- For example:

In Practice, bounds are loose,
but general behavior captured

- Bound on #iterations from previous slide:

- Example from book:
 - Self concordant function
 - Empirical bound:
Solving problems with equality constraints

- Equality constraints:
 - Seems very hard

Null space

- Equality constraints:
 - Given one solution:
 - Find other solutions:
 - Since Null Space is a linear subspace:
Eliminating linear equalities

- Equivalent optimization problems:
 - Find basis for null space of A (linear algebra)
 - Solve unconstrained problem
 - A concern…

Solving quadratic problems with equality constraints

- Quadratic problem with equality constraints:
 - KKT condition \(x^* \) solution iff

 - Rewriting:

 - Solve linear system:
 - Any solution is OPT
 - If no solution, unbounded
Newton’s method with equality constraints

- Quadratic approximation:

 - Start feasible, stay feasible:
 - KKT:

 - Solve linear system:

 - Move accordingly:

General convex problem

- General (differentiable) convex problem:

 - Equivalent problem with only equality constraints:
Approximating the indicator

- Approximate indicator:
 - Correct as t
 - Differentiable

- Approximate optimization problem:

- Convex, if f_i are convex, because

Log-barrier function

- Solve log-barrier problem with parameter t:

 - Nice property:
 - Gradient:
 - Hessian:
Force field interpretation

- Log-barrier function:
 - Descending gradient of log barrier

- Each term:
 - Want $f_i(x) \leq 0$
 - As we approach 0:

Central path

- For each t, solve:

- As t goes to infinity, approach solution of original problem

- Problem becomes badly conditioned for very large t, so want to stay close to path and make small steps on t
Barrier method

- **Given:**
 - Feasible \(x^{(0)}\)
 - Initial \(t > 0\)
 - \(\mu > 1\)

- **Repeat**
 - **Centering:**
 - Starting from \(x\), compute:
 - **Update:** \(x := \ldots\)
 - **Stopping criterion:** When \(t\) is “large enough”
 - **Increase barrier param:** \(t := \ldots\)

When is \(t\) large enough???

- **Solve centering step:**

 - There exists values for dual vars (See book), such that duality gap \(\leq k/t\)

 - **Thus:**

 - **Stopping criterion** \(k/t \leq \varepsilon\)
Centering step not (necessarily) exact

- Finding exact point on central path can take a while…

- Usually:
 - Run a few steps of Newton to recenter
 - Then increase t
 - (problem: duality gap result no longer holds!!)

- Most often use primal-dual method
 - Equivalent to Newton’s method on Lagrangian

 - See book for details

What about feasible starting point???

- Phase I: Solve feasibility problem, e.g.,
 - Starting from feasible point:
 - (don’t solve to optimality!!! Stop when s<0)
 - When feasible region “not too small”, find point very quickly
 - Phase II: use feasible point from Phase I as starting point for Newton’s or other method

- Also possible:
 - Change Phase I to guarantee starting point (near) central path
 - Combine Phase I and Phase II