Algorithms

- Algorithms for LPs
 - Naive: enumerate all bases
 - Simplex
 - Constraint/variable generation (sort of)

- Algorithms for QPs
 - Constraint generation

- Upcoming:
 - Subgradient descent
 - Ellipsoid
 - Interior point (later)
What’s a subgradient?

\[f(y) \geq f(x) + (y-x) \cdot g \quad \forall y \]

\[\iff g \in \partial f(x) \]
Residents of Delphi

subgradient

separation oracle for epigraph

$h(x)$

$(x, v) \quad v < f(x)$
Working w/ subgradients

• Subgradients are just like gradients (sort of):
 ‣ when $f'(x)$ exists: $\partial f(x) = \{ f'(x) \}$
 ‣ $\partial (f+g)(x) = \partial f(x) + \partial g(x)$
 ‣ $\partial f(Ax+b) = A^T(\partial f)(Ax+b)$
 ‣ $\partial g(x) = \partial (f(g(x))) = \partial f(g(x)) \partial g(x)$
 ‣ $0 \in \partial f(x) \iff x \in \text{arg min } f(x)$

f, g convex
Proof of chain rule

\[x_0 \in \partial g(x_0) \quad y_0 = g(x_0) \quad v \in \partial f(y_0) \]

• \(\partial f(g(x)) = (\partial f)(g(x)) \partial g(x) \)

 • \(f, g \) convex; \(f \) monotone

 \[g(x) \geq g(x_0) + (x - x_0) \cdot u \]

 \[f(g(x)) \geq f(g(x_0)) + (x - x_0) \cdot u \cdot \]

 \[f(y) \geq f(y_0) + (y - y_0) \cdot v \]

 \[f(g(x)) \geq f(g(x_0)) + (x - x_0) \cdot u \cdot \]

 \[f(g(x)) \geq f(g(x_0)) + (x - x_0) \cdot u \cdot \]

 \[\iff \quad u \in \partial f(g(x)) \]
Ex: dual norm

- Given a norm, \(\|x\| \)
- The **dual norm** is
 - \(\|y\|_* = \max_{x \in C} x^T y \)
 - \(C = \{ x \mid \|x\| \leq 1 \} \)
 - ex: dual of \(\|x\|_1 \) is: \(\|y\|_{\infty} = \max_{i} |y_i| \)
 - ex: dual of \(\|x\|_2 \) is: \(\|y\|_2 \)

- Suppose we want to solve
 - \(\min_w \|w\|_*^2 + \lambda \sum_i (x_i^T w - y_i)^2 \)
Subgradient of dual norm

- \(\|w\|_* = \max_{x \in C} x^T w \) where \(C = \{ x \mid \|x\| \leq 1 \} \)
- \(\partial \|w\|_*^2 = 2 \|w\|_*^2 \|w\|_* \)
- Let \(x_w \in \arg \max_{x \in C} x^T w \)
 - \(\|w\|_* = w \cdot x_w \)
 - \(\|v\|_* \geq v \cdot x_w \)
 - \(\|u\|_* - \|w\|_* \geq (u - w) \cdot x_w \)
- \(\partial \|w\|_* = \{ \arg \max_{x \in C} x \cdot w \} \)
Ex: SVM subgradient

- \(\min_w L(w) = \|w\|^2/2 + (C/m) \sum_i h(y_i(x_i^T w - b))\)
 - where \(h(z) = \max(0, 1 - z)\)

- \(\partial h(z) = \begin{cases}
0 & z \geq 1 \\
(z - 1) & -1 \leq z < 1 \\
-1 & z < -1
\end{cases}\)

- \(\partial L(w) = w + \sum_{i} \alpha_i y_i x_i\)
SVM loss: hinge portion
SVM loss: hinge portion
SVM loss: $C = 10$
Subgradient descent

- Greedily try to decrease objective
 - fastest local decrease: negative subgradient if smooth
Subgradient descent

• Initialize x_1

• for $t = 1$ to “I’m tired”

 ‣ $g_t = \text{any element of } \partial f(x_t)$

 ‣ $x_{t+1} = x_t - \eta_t g_t$

• Questions:

 ‣ how to initialize?

 ‣ when are we tired?

 ‣ what to use for η_t?
Numerical example

• SVM, training examples:
 ▸ $(3, +), (0.1, –)$

• $L(w, b) = \frac{w^2}{2} + \frac{C}{2}(h(z_1)+h(z_2))$
 ▸ $z_1 = 3w - b$
 ▸ $z_2 = -0.1w + b$

• $\partial L(w, b) = \begin{pmatrix}
 \frac{C}{2} (3\alpha_1 - \alpha_2) \\
 \frac{C}{2} (-\alpha_1 + \alpha_2)
\end{pmatrix}$
Subgradient path
Subgradient projection

- Initialize x_1
- for $t = 1$ to “I’m tired”:
 - $g_t =$ any element of $\partial f(x_t)$
 - $x_{t+0.5} = x_t - \eta_t g_t$
 - $x_{t+1} = \text{arg min}_{x \in F} ||x - x_{t+0.5}||$

Problem:

$$\min_x f(x) \quad \text{s.t.} \quad x \in F$$

Example of why subgradient projection is different from just projecting the unconstrained minimum onto the constraints: minimize elliptical quadratic s.t. L1 constraint

Example: max $x+y$ within unit circle
Stochastic subgradient

• Recall SVM subgradient:
 \[\partial L = w + (C/m) \sum_{i=1}^{m} y_i x_i \partial h(y_i(x_i^T w - b)) \]

• If many examples: select \(m_0 \ll m \) examples at random, compute
 \[\hat{\partial L} \approx w + (C/m_0) \sum_{i \in S} y_i x_i \partial h(y_i(x_i^T w - b)) \]
 where \(S \) is a selected set

• Simple trick: to get an unbiased estimate of \(\partial L \), select \(m_0 \ll m \) examples at random, compute
 \[\partial L = w + (C/m_0) \sum_{i \in S} y_i x_i \partial h(y_i(x_i^T w - b)) \]

\[L \approx \|w\|^2/2 + (C/m_0) \sum_{i \in S} y_i x_i h(y_i(x_i^T w - b)) \]
Example: $m_0 = 10$ of 100
Stochastic subgradient (or stoch. subg. projection)

• Initialize x_1

• for $t = 1$ to “I’m tired”:
 ‣ $f_t =$ estimate of f
 ‣ $g_t =$ any element of $\partial f_t(x_t)$
 ‣ $x_{t+0.5} = x_t - \eta_t g_t$
 ‣ $x_{t+1} = \text{arg min}_{x \in F} ||x-x_{t+0.5}||_Z$ (or just $x_{t+0.5}$)

Problem:
\[
\min_x f(x)
\] (optionally, s.t. $x \in F$)
Strict convexity

- Def’n: \(f \) is \(\lambda \)-strictly convex if, for \(g \in \partial f(x) \),
 \[f(y) \geq f(x) + (y - x) \cdot g + \lambda \|y - x\|_2^2 / 2 \]

- note: \(\lambda = 0 \) \(\iff \) ordinary convexity
A useful inequality

\[\sum_{i=1}^{t} \frac{1}{x_i} \leq 1 + \ln t \]

\[1 + \int_{1}^{t} \frac{1}{x} \, dx \]

\[1 = [\alpha x]_1 \]

\[1 + \ln t - \theta \]
Convergence preview

• For strictly convex $f(x)$ (i.e., $\lambda>0$):

 ‣ set $\eta_t = \frac{1}{\lambda t}$
 ‣ $f(x_t) - f(x^*) = O\left(\frac{1}{t}\right)$

• For non-strictly convex $f(x)$ (i.e., $\lambda=0$):

 ‣ set $\eta_t = o\left(\frac{1}{\sqrt{t}}\right)$
 ‣ $f(x_t) - f(x^*) = o\left(\frac{1}{\sqrt{t}}\right)$

• To get accuracy ε:

 ‣ $\lambda>0$: $T = O\left(\frac{1}{\varepsilon}\right)$
 ‣ $\lambda=0$: $T = o\left(\frac{1}{\varepsilon^2}\right)$

Interior point:
$T = O\left(\ln\left(\frac{1}{\varepsilon}\right)\right)$
but each iter slower